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 In this study, the synthesis of Fe3O4 /PANI nanocomposites is achieved by 
employing a spin coating technique, which involves the initial preparation 
of Fe2O3 from iron sand through magnetic separation and ball milling. The 
Fe3O4 precursor is then combined with polyaniline (PANI) at different 
concentrations (30%, 40%, 50%, 60%, and 70%) using a sol-gel process. 
The resulting Fe3O4 /PANI gel mixture is spin-coated onto glass substrates 
and dried. The nanocomposite films undergo extensive characterization 
through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), 
Vibration Sample Magnetometry (VSM), and electrical measurements using 
an LCR meter. Our findings show a correlation between Fe3O4 

concentrations and crystal size, observed as a decrease from 30% to 40%, 
an increase at 50%, and a subsequent decrease from 60% to 70%. Fourier-
transform infrared spectroscopy (FTIR) confirms the chemical bonding 
between Fe3O4 Fe2O3 and PANI. SEM images reveal the layer thickness 
varies with concentration, measured as 5.02 µm, 16.54 µm, 17.82 µm, 
19.36 µm, and 24.4 µm, respectively. Electrical properties indicate 
resistance values of 7.36 mΩ, 8.388 mΩ, 8.101 mΩ, 8.53 mΩ, and 3.53 mΩ 
for the respective Fe3O4 concentrations, with corresponding capacitance 
values. This study elucidates the structural and electrical properties of 
Fe3O4 /PANI nanocomposites, highlighting their potential for diverse 
applications. 
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G R A P H I C A L A B S T R A C T 

 
 

Introduction 

The integration of electronic devices into daily 

life has escalated energy demands, underscoring 

the critical need for sustainable energy sources 

and advancements in energy storage 

technologies. Among various solutions, lithium 

batteries stand out for their pivotal role in 

powering electronics, benefiting from attributes 

like high energy density and the absence of a 

memory effect, facilitating their widespread 

adoption [1-9]. Despite their advantages, lithium 

batteries grapple with significant safety, 

economic, and environmental concerns, 

necessitating the exploration of safer and more 

sustainable alternatives [10-17]. Addressing the 

limitations of conventional lithium battery 

materials, such as graphite, which suffers from 

electrochemical constraints that impede lithium 

ion mobility and diminish energy efficiency, 

research has shifted towards innovative 

materials. Fe3O4 magnetite nanoparticles have 

gained prominence as a superior alternative due 

to their high theoretical capacity (1000 mAh/g), 

abundance, and cost-effectiveness, offering a 

potential breakthrough in electrode material 

technology [18-25]. The employment of 

nanostructured materials is a strategic response 

to these challenges, aiming to enhance 

electrochemical performance by optimizing ion 

and electron transport pathways and expanding 

electrode contact surfaces, thus facilitating 

improved charge/discharge kinetics and elevated 

energy capacities [26-31]. Parallelly, the field of 

supercapacitors is witnessing significant interest 

owing to their remarkable specific capacitance, 

robustness, high power output, and eco-friendly 

characteristics. These features render 

supercapacitors ideal for applications in portable 

electronics and electric vehicles, demanding 

advancements in electrode materials to overcome 

the limitations posed by conventional options 

like activated carbon and transition metal oxides 

[32-54]. The quest for materials that blend high 

conductivity with structural advantages has led 

to the exploration of innovative composites. This 

manuscript presents a study focused on the 

development of a supercapacitor electrode 

material comprising a nanocomposite of Fe3O4 

metal oxide and PANI conductive polymer.  
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This study aims to leverage the unique properties 

of supercapacitors and address the current gaps 

in energy storage solutions by enhancing the 

performance of supercapacitors through the 

introduction of Fe3O4 @conductive polymer 

nanocomposites. This approach is particularly 

innovative as it utilizes Fe3O4 synthesized from 

iron sands sourced from West Sumatra, offering a 

novel pathway to sustainable and efficient energy 

storage [61-62]. 

By targeting the advancement of electrode 

materials for both lithium batteries and 

supercapacitors, this study endeavours to 

contribute significantly to the field of energy 

storage, addressing both the challenges of current 

technologies and the pressing demand for 

sustainable energy solutions. 

Materials and Methods 

Iron sand from West Sumatra, Indonesia, was 

used to synthesize Fe3O4 nanoparticles. 

Analytical-grade reagents: FeCl2·6H2O, 

ammonium persulfate, HCl, and aniline monomer 

(C6H5N, 99%), were obtained from Sigma Aldrich 

and used as received. 

Synthesis of Fe3O4 nanoparticles 

The process started with the magnetic separation 

of iron sand to isolate magnetite-rich fractions, 

followed by cleaning and drying. The material 

underwent further magnetic separations and was 

then processed in a high-energy milling machine, 

with a ball-to-sample weight ratio of 10:1, for 30 

hours to achieve a uniform Fe3O4 phase. 

Synthesis of PANI/ Fe3O4 nanocomposite 

Fe3O4 nanoparticles were mixed with 

hydrochloric acid (35% by volume) to prepare 

the precursor. FeCl2·6H2O was reacted with the 

nanoparticles in hydrochloric acid, using 2 mL of 

HCl per gram of magnetite. The nanocomposite 

was synthesized via in situ polymerization, 

varying Fe3O4 concentrations from 30% to 70%. 

Ammonium persulfate was added gradually over 

four hours. The product was then washed, dried, 

and prepared for spin coating to form thin layers, 

which were dried at 60 °C. 

Characterization of PANI/ Fe3O4 nanocomposite 

The Fe3O4 /PANI samples underwent 

characterization using X-ray diffraction (XRD), 

scanning electron microscopy (SEM), and 

electrical testing with an LCR meter to evaluate 

their crystal structure, morphology, and electrical 

properties. 

Results and Discussion 

Structure of Fe3O4/PANI nanocomposite 

The structural characteristics of Fe3O4 /PANI 

nanocomposites with varied Fe3O4 concentrations 

were elucidated through X-ray diffraction (XRD) 

analysis. Figure 1 presents the diffraction 

patterns for the nanocomposites at Fe3O4 

concentrations of 30%, 40%, 50%, 60%, and 

70%. XRD results show variations in peak 

intensities and widths, reflecting differences in 

crystal sizes. The peaks are assigned to PANI 

(Powder Diffraction File code: 00-060-1168) and 

Fe3O4 (Powder Diffraction File code: 01-078-

3149). 

Incorporating the analysis from recent studies, 

we can enhance the understanding of the 

relationship between Full Width at Half 

Maximum (FWHM) values and crystal sizes, 

particularly through the lens of Scanning Electron 

Microscopy (SEM) images. The FWHM values, as 

indicators of crystal perfection and size in X-ray 

diffraction patterns, offer a quantitative measure 

of crystal dimensions. A direct correlation 

between FWHM values and crystal sizes has been 

observed, where smaller FWHM values often 

signify larger crystalline structures due to 

reduced strain and defects within the crystal 

lattice. This relationship is critical in materials 

science, especially for optimizing the properties 

of nanocomposites and thin films where crystal 

size plays a pivotal role in determining the 

material's electrical, optical, and mechanical 

properties. Studies have demonstrated that the 

addition of certain elements, such as Zn in CdS 

films, can significantly alter the structural and 

optical properties of the resulting compounds, 

affecting their bandgap and, consequently, their 

application potential in devices like solar cells.  
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Figure 1: Diffraction patterns of Fe3O4 /PANI nanocomposite at various Fe3O4 concentrations: (a) 30%, (b) 40%, 

(c) 50%, (d) 60%, and (e) 70%

The alteration in crystal size and structure, as 

influenced by composition and processing 

conditions, can be meticulously analysed through 

SEM imaging, providing a visual and quantitative 

assessment of these changes [63-65]. SEM images 

not only complement the data obtained from 

FWHM measurements by offering a direct visual 

representation of the crystal sizes and shapes, 

but also help in understanding the morphological 

evolution of the material as a function of different 

synthesis conditions or compositional variations. 

This dual approach of combining XRD analysis 

with SEM imaging forms a comprehensive 

methodology for investigating and tailoring 

material properties at the nanoscale. Analysis 

reveals that crystal size is smaller at a 40% 

concentration compared to 30%, 60%, and 70% 

concentrations, with the largest crystal size at 

50% concentration. Subsequently, crystal size 

diminishes at 60% and 70% concentrations. In 

addition, Full Width at Half Maximum (FWHM) 

values correlate directly with crystal sizes, where 

smaller FWHM values indicate larger crystals. 

FWHM values increase from 30% to 70% 

concentration, signifying a reduction in crystal 

size. 

SEM imaging was utilized to examine the cross-

sectional thickness of Fe3O4 /PANI 

nanocomposite layers. Figure 2 displays cross-

sectional images for 30%, 40%, 50%, 60%, and 

70% concentrations. The thickness increases 

with concentration, revealing a direct 

relationship between Fe3O4 concentration and 

nanocomposite layer thickness. Specifically, layer 

thicknesses are 5.02 µm, 16.54 µm, 17.82 µm, 

19.36 µm, and 24.4 µm for 30%, 40%, 50%, 60%, 

and 70% concentrations, respectively. This trend 

underscores that higher Fe3O4 concentrations 

lead to denser layers, attributable to more Fe3O4 

particles integrating into the polymer matrix [66-

68]. The integration of SEM imaging in the 

analysis further solidifies the understanding of 

how changes in concentration affect the 

structural attributes of nanocomposites, directly 

correlating with FWHM findings and providing a 

more comprehensive picture of material 

behaviour across different concentrations. 
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Figure 2: Cross-sectional images of Fe3O4 / PANI nanocomposite layers at varying Fe3O4 concentrations. Insets 

show the relationship between Fe3O4 concentration and layer thickness 

Upon examining the SEM images in Figure 2, 

which showcase cross-sectional views of 

Fe2O3/PANI nanocomposite layers at different 

Fe3O4 concentrations, a clear trend is evident in 

the morphology and layer thickness as the 

concentration of Fe3O4 increases. The images 

labelled (a) through (e) correspond to increasing 

concentrations of Fe3O4 from 30% to 70%. Image 

(a) shows a relatively smooth and uniform layer, 

indicative of a lower concentration composite. As 

the concentration rises, images (b) and (c) 

display progressively rougher textures and 

increased irregularity, suggesting a densification 

of the nanocomposite structure with more Fe3O4 

particles becoming embedded within the polymer 

matrix. Further increases in Fe3O4 concentration 

are reflected in images (d) and (e), where the 

layers not only become thicker, but also exhibit a 

more pronounced ruggedness and porosity. This 

is consistent with the inset graph, which plots 

layer thickness against Fe3O4 concentration, 

demonstrating a nonlinear increase in thickness. 

The thickest layer at the 70% concentration 

shows significant morphological changes, 

including larger, more distinct particles and a 

more complex surface topology compared to the 
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smoother layers at lower concentrations. These 

observations support the idea that the Fe3O4 

concentration within the nanocomposite has a 

significant impact on both the microstructural 

and macrostructural scales. The microstructural 

scale, indicated by the surface topology and 

particle size visible in the SEM images, suggests 

that higher Fe3O4 concentrations lead to greater 

agglomeration and potentially affect the electrical 

and mechanical properties of the nanocomposite. 

On the macrostructural scale, the overall increase 

in layer thickness could impact the feasibility of 

layer application and the performance of the 

nanocomposite in practical devices. The 

morphological features observed in these SEM 

images are crucial for understanding the 

material's performance characteristics. The 

rugged and porous structure observed at higher 

Fe3O4 concentrations could potentially enhance 

the surface area of the electrode, which is 

beneficial for applications like supercapacitors 

that rely on surface reactions. Conversely, the 

increased roughness and irregularity at higher 

concentrations might lead to mechanical 

instability, which would be a trade-off against the 

enhanced electrical properties. Therefore, 

optimizing the Fe3O4 concentration in the 

Fe3O4/PANI nanocomposite is essential for 

balancing these properties to meet specific 

application requirements. Overall, the SEM 

analysis provided in Figure 2 affords a 

comprehensive understanding of the material's 

structural evolution with changing Fe3O4 

concentration, offering insights into the trade-offs 

and considerations necessary for the application-

specific optimization of Fe3O4 /PANI 

nanocomposites. 

The study demonstrates that Fe2O3 concentration 

not only affects crystal size, but also significantly 

impacts the thickness of the nanocomposite 

layers, highlighting the direct correlation 

between material composition and structural 

properties. 

Electrical properties of Fe3O4/PANI nanocomposite 

The study of the electrical properties of 

Fe3O4/PANI nanocomposite layers is crucial to 

this research. Electrical resistance and 

capacitance were precisely measured using an 

LCR meter. Figure 3 demonstrates the correlation 

between Fe3O4 concentration in the 

nanocomposites and their electrical resistance. 

XRD results show a clear trend in resistance 

values at Fe3O4 concentrations of 30%, 40%, 

50%, 60%, and 70%, recorded as 7.36 mΩ, 8.388 

mΩ, 8.101 mΩ, 8.53 mΩ, and 3.53 mΩ, 

respectively. Notably, resistance decreases with 

an increase in Fe3O4 concentration, reaching the 

lowest at 70% with 3.53 mΩ. 

Further examination into the electrical 

capacitance at the same Fe3O4 concentrations 

revealed capacitance values of 5.4×10-11 F, 

2.8×10-11 F, 4.2×10-11 F, 2.69×10-10 F, and 1.6×10-

11 F, respectively. Figure 4 illustrates an initial 

increase in capacitance with concentration, 

peaking at 60%, before a decline at 70%. 

 

 

Figure 3: Graph showing the correlation between Fe3O4 concentration and electrical resistance in Fe3O4 /PANI 

nanocomposite layers 
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Figure 4: Graph illustrating the relationship between Fe3O4 concentration and electrical capacitance in Fe3O4 

/PANI nanocomposite layers

These findings highlight the significant impact of 

Fe3O4 concentration on the electrical properties 

of the nanocomposites. The decrease in 

resistance with higher Fe3O4 concentration 

suggests improved conductivity, likely due to the 

greater presence of conductive Fe3O4 particles. 

Conversely, capacitance exhibits a complex 

relationship with concentration, peaking at 60% 

then decreasing, likely due to interactions 

between the dielectric properties of the PANI 

matrix and the conductive nature of Fe3O4 

particles. These insights are pivotal for 

optimizing Fe3O4/ PANI nanocomposites' 

application in electronic devices [69-71]. 

Electrochemical response of Fe3O4/PANI 

nanocomposite 

The electrochemical performance of Fe3O4 /PANI 

nanocomposite-based supercapacitor electrodes 

was assessed through Electrochemical 

Impedance Spectroscopy (EIS) using a CS350 EIS 

Potentiostat/Galvanostat (Corrtest Instruments, 

China) over a frequency range from 1 Hz to 

30,000 Hz. The EIS measurements, set at an 

amplitude of 5 mV and a bias of 0 V DC in a 6 M 

KOH electrolyte using Ag/AgCl reference 

electrodes, are depicted in Figures 5 and 6. 

 

Figure 5: Nyquist plot for Fe₃O₄/PANI nanocomposite electrode with 60% Fe₃O₄ by weight 
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Figure 6: Nyquist plot for Fe₃O₄/PANI nanocomposite electrode with 70% Fe3O4 by weight 

The Nyquist plots show characteristic impedance 

behaviours, with straight lines in both high and 

low frequency regions, indicating optimal 

electrochemical impedance characteristics. The 

equivalent series resistance (ESR) was 

approximately 0.8 Ω, reflecting the combined 

resistances of the Fe3O4 /PANI nanocomposite, 

the electrolyte's ionic resistance, and the contact 

resistance at the interface with the current 

collector [72]. 

These results illuminate the efficient electron 

transport within the supercapacitor, 

underscoring the potential of the Fe3O4/PANI 

nanocomposite for high-performance energy 

storage applications. The impedance behaviour 

across frequency regions also provides insights 

into charge transport mechanisms and electrode-

electrolyte interactions, crucial for the design and 

optimization of Fe3O4/PANI nanocomposite-

based supercapacitors [73-77].  

Conclusion 

The synthesis of Fe3O4 /PANI nanocomposites 

through sol-gel and spin-coating techniques 

marks a significant advancement in materials 

science. Characterization revealed distinct 

diffraction peaks for Fe3O4, PANI, and their 

composite, indicating successful integration. 

Electrophysically, these nanocomposites 

demonstrated a low resistance of 3.53 mΩ at a 

70% Fe3O4 concentration and a peak capacitance 

of 2.69×10-10 F at 60% concentration. Such 

electrical properties highlight the potential of 

Fe3O4 /PANI nanocomposites as supercapacitor 

electrodes, promising for advanced energy 

storage applications. This research not only 

confirms the successful combination of Fe3O4 and 

PANI, but also establishes a foundation for 

further exploration and optimization of these 

materials in cutting-edge energy storage 

technologies. 
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