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 A blockage of the blood vessels feeding the area causes ischemia, which is 
defined as a localized absence of blood flow. If an organ is not getting enough 
oxygen and blood flow, such as the heart, or brain it is said to be ischemic. To 
describe the progress made in the detection, characterization, and prediction 
of cardiac ischemia using Machine Learning (ML)-based Artificial Intelligence 
(AI) processes including together Single Photon Emission Computed 
Tomography (SPECT) and Positron Emission Tomography (PET). In the 
relatively recent past, the use of machine learning algorithms in the area of 
cardiology has increasingly centered on image processing for the goals of 
diagnosis, prognosis, and type identification analysis. The main objective of 
this study was to improve Nuclear Cardiology (NC) images for cardiac 
ischemia patients using Image Processing techniques. Clinical research is 
being significantly changed by the AI application. Through the examination of 
very big datasets and the recent convergence of potent ML algorithms and 
rising computer capacity, it has been shown that experimental categorization 
as well as prediction may be improved through examining extremely high-
dimensional non-linear features. Machine learning is improving the 
identification of perfusion abnormalities in myocardial ischemia and 
predicting adverse cardiovascular events at the patient level.  
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Introduction 

Artificial intelligence has transformed how we 

engage with the vast deluge of data enabled by 

contemporary automated processes, connectivity, 

and storage systems. One reason for this meteoric 

rise in AI's widespread use is the advent of 

cutting-edge ML algorithms like convolutional 

neural networks, and another is the confluence in 

recent years of enormous computing power, vast 

troves of readily available training data, a 

plethora of real-world applications, and a wealth 

of real-world use cases [1]. Figure 1 displays the 

AI, machine learning, and deep learning 

conceptual model. 

In reality, ML has been used in some very 

innovative ways in the medical field, such as in 

the classification of skin lesions as benign or 

malignant and the immediate processing of 

funduscopic retinal images for the diagnosis of 

diabetic retinopathy. Cardiac ischemia has long 

been NC mainstay and the primary method for 

identifying obstructive coronary artery disease 

[2]. Every year, almost 7 million people get 

cardiac ischemia. The range of cardiac ischemia 

continues to grow as radioactive imaging 

technology develops. For instance, the switch 

from planar to tomographic imaging increased 

cardiac ischemia predictive power. As gated left 

ventricular ejection fraction became a possibility, 

it further supplied predictive information with 

increased precision in patient management. ML is 

in a position to further improve radionuclide 

cardiac ischemia diagnostic efficacy. ECG data 

processing for the aim of finding abnormalities in 

the conduction system was the primary focus of 

the early machine learning implementations in 

cardiology, while more recently approaches have 

been put into practice to diagnose arrhythmias. 

At this time, it is becoming abundantly clear that 

cardiovascular imaging, and in particular NC 

(SPECT and PET cardiac perfusion imaging), 

constitutes a particular niche for the application 

of artificial intelligence [3]. Using ML-based AI 

processes in together SPECT with PET imaging, 

this study aims to offer an overview of the 

foundations underpinning AI and ML, the 

advances made in identifying and characterizing 

myocardial ischemia, as well as the data about 

the prognosis of ischemia-related effects.  

The remaining sections of the manuscript is 

organized as follows: Section 2- Artificial 

intelligence and machine learning, section 3- 

Deep learning, section 4- Recent development in 

image processing, section 5- Use of AI in NC, 

section 6- Maximizing Cardiac Ischemia 

Recognition and Characterization, section 7- 

Refinement of Prognostic Estimates in cardiac 

Ischemia, section 8- Potential Limitation of ML in 

NC, section 9- Prospects for future, and section 

10- conclusion.  

Artificial intelligence and machine learning  

The AI theory has seeped into every facet of 

computer science since its inception. It originated 

with the idea that a system may be trained to 

display "human-level" intelligence by solving 

problems and doing tasks that previously 

required human intelligence. Because of this, the 

first attempts in AI implementations consisted of 

straight rule programming for a limited set of 

tasks [4]. 

 

Figure 1: AI, ML, and deep learning conceptual model 
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Using such a method, it was quickly clear that the 

vast number of rules that were already there to 

handle incoming data would be a constraint for 

AI jobs. As a result, improvement could not be a 

result of contact toward new records since an AI 

system would only be able to operate successfully 

when confronted with situations that were 

immediately identifiable within its library of 

already thought-out action rules. Early AI 

implementations' somewhat static character 

eventually led to "cooling" expectations for the 

technology [5]. The advent of contemporary ML 

algorithms, which gave the field a dynamic and 

responsive feel, near the close of the 20th century, 

reignited interest in AI. ML refers to the group of 

mathematical algorithms that, given enough data, 

would provide optimal results for a given 

function. AI is a wide term, and it typically 

presents the idea of computers doing tasks that 

need a certain (human) point of cognition. The 

capacity of ML algorithms to continuously 

enhance their performance via exposure to vast 

volumes of (training) data is what distinguishes 

them from other types of algorithms. ML 

algorithms initially attempt to accurately 

evaluate a dependent variable using mostly 

ineffective, sometimes random, parameters 

(outcome). Table 1 indicates the description of 

machine learning methods. 

Several algorithms improve these parameters to 

lower mistake rates. Following each phase of data 

exposure, the ML model parameters are 

optimized or adjusted to reduce the estimate of 

error [6]. This pattern of action characterizes the 

concept of learning central to ML. Those patterns, 

if discovered, are then utilized to train the model 

to do the desired job better. Therefore, the ML 

model is tested on an isolated dataset to assess 

how well it performs with new, untrained data, a 

process known as "generalization". There are 

several instances of effective ML algorithms, 

including random forests, boosted ensembles, 

and support vector machines. 

 

Table 1: Description of machine learning methods 

Methods Description Pros Cons 

Logistic 

Regression 

Extending linear regression 

to provide a two-class 

outcome. 

Easy to understand and 

explain; doesn't need any 

empirical input or adjustment 

of parameters; 

standardization of features. 

Overfitting is common; it 

cannot handle nonlinear 

situations. 

Support 

Vector 

Machine 

Identifies the best-dividing 

line across categories. 

Class separations of non-linear 

kinds may be handled; huge 

training samples are not 

necessary. 

Needs non-linear kernel 

selection and hyper-parameter 

adjustment; Not a good fit for 

massive data sets. 

Random 

Forest 

Decision queries are 

generated over the input 

and output data in a 

hierarchical structure. 

Features' relevance is 

determined automatically; no 

input feature normalization is 

necessary. 

Easily over fit; it needs a depth 

and tree count specification. 

Artificial 

Neural 

Network 

Propagates incoming data 

via a network of non-linear 

changes to model difficult 

categorization jobs. 

Gains in generalization when 

exposed to a big enough 

training set. 

Impossible to decipher; pre-

selection of network 

architecture is necessary. 

Convolution

al Neural 

Network 

AI networks trained to 

analyze and categorize 

image data. 

The modular layout adapts to 

many uses; one can choose the 

best characteristics by viewing 

the imagery 

Like ANNs, there are certain 

restrictions. 

Clustering 

Identifies groupings of 

input features without 

human oversight. 

Beneficial for finding 

subgroups when the labels for 

the larger groups are already 

known. Easy and quick. 

Difficulty in estimating the size 

of subgroups; sensitivity to 

beginning conditions. 
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Convolutional neural networks, which will be 

covered in more detail below under the term 

Deep Learning, are, nonetheless, the most 

noteworthy recent example of very effective ML 

algorithms. It was mentioned that the present 

wave of AI proliferation has been made feasible 

by the confluence of four variables. Due to 

increased interconnectivity, which made it easier 

to remember and make extremely huge and 

dynamic datasets available. The large-scale 

computing power has been the second 

component. Modern graphics processing units 

(GPUs), for example, have processing units with 

constantly expanding computing capacity thanks 

to the ongoing innovation in electrical 

technologies. These GPUs today enable the 

completion of enormous computational jobs 

within the reasonable timeframes. The ongoing 

development of new approaches and 

optimization strategies to boost the functionality 

of these algorithms is the third component. The 

availability of frameworks, which enables more 

users and academics to experiment with this 

technology, is the fourth element. The best use 

cases for Ml techniques are complicated activities 

requiring the understanding of high-dimensional 

patterns for the recognition of identified 

groupings or information patterns [7]. 

Scope of ML  

As a field, NC has limitless potential for ML. ML 

may be able to integrate patient information with 

imaging data to deliver tailored therapy 

suggestions for each individual or offer precision 

medicine. ML has to learn in a certain manner if it 

is to repeat findings that are comparable to 

human equivalents. To analyze the data and 

reveal hidden patterns, ML makes many tries. As 

the data set grows, so do ML's capabilities in a 

proportionate manner. However, the features 

interpretability might be lost as data collection 

becomes bigger. Supplied, unsupplied, and 

reinforcement approaches make up machine 

learning. Supervised machine learning is often 

utilized in NC [8].  A dataset comprising classes or 

outcomes is used in supervised learning. 

Unsupervised learning finds hidden correlations 

in data collection when it is applied to datasets 

containing labels or annotations. Several reward 

criteria used in reinforcement learning are 

analogous to those in human psychology. Deep 

learning is rapidly gaining popularity in the area 

of cardiology within unsupervised learning. It 

employs several layers of cells that resemble the 

neural networks seen in the human brain. Due to 

major advancements in computing power and 

cloud infrastructure, this specific sector is 

flourishing. ML aims to learn from the data 

without any supervision whereas classic 

statistical approaches use labels to find an 

association between variables. Researchers need 

to be aware of the extensive overlap between the 

fields of ML and traditional statistics. ML is 

dynamic and, in many respects, more like the 

actual world than the traditional techniques, 

which are static. Nevertheless, statistics do not 

excel in prediction [9]. In contrast, ML systems 

have been highly successful in producing data-

driven predictions from data sets. Distributions 

of ML methods are represented in Figure 2. 

Deep learning  

The ML method known as neural networks were 

influenced by the structure of organic synapse 

connections. They are composed of input, hidden, 

and output layers in their most basic form. Large 

numbers of features, such as the factors for each 

pixel in an image, may be accommodated via 

input layers. The data from the input layer is then 

integrated and processed in a variable number of 

units in hidden layers, which pass the processed 

data on to the next layer until it reaches an 

output layer. 

 

Figure 2: Distributions of ML methods 
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Figure 3: Schematic representation of a deep convolutional neural network 

A cost function that measures our model's 

performance and is specifically adapted to the 

task's purpose is used in the output layer. The 

categorization of the input samples into several 

categories, the forecasting of a continuous result, 

or the recognition of a particular item in an image 

are a few examples of this activity. Figure 3 

represents the schematic representation of a 

deep convolutional neural network. 

Convolutions, one of the many processing tasks 

that may be given to hidden layers, have played a 

significant role in creating networks that are 

exceptionally well-suited for image identification. 

By moving kernels over the image, convolutions 

enable the network to develop position-invariant 

features. These kernels begin with arbitrary 

parameters, which are then adjusted at each 

iteration to minimize a certain cost error. The 

process by which an error is reduced by 

reversing its path from the output to the input is 

called backpropagation. By merging the features 

created at the previous layers, the network can 

build the additional conceptual features to gather 

relevant data to finish the task with each 

successive layer [10]. Hence, the increasing 

number of hidden layers in current neural 

networks has become a frequent characteristic. 

The depth of the networks rises with each 

additional processing layer. Thus, the term "Deep 

Learning" has quickly become the working name 

for various ML methods. Utilizing deep learning 

ML in NC is a potential area for future study. In 

contrast to the supervised methods, deep 

learning gradually gathers information across 

several "layers" that is analogous to neurons. 

With massive data sets, most ML techniques hit 

their limitations, whereas deep learning becomes 

exponentially better. It can accurately forecast 

cardiac death and extract useful information from 

diverse data. Automated transform by manifold 

approximation (AUTOMAP), a new development, 

can recreate images from several modalities, 

including PET scans [11]. No specialist is 

required. This may help patients get less 

radiation exposure during the SPECT scans and 

provide high-quality images. Perfusion SPECT 

images and image representation on polar maps 

may both benefit from deep learning. 

Recent developments in image processing  

The usefulness and potential of neural networks 

may be improved by exploring other topologies, 

which have been the subject of an investigation 

by several research teams. The U-Net design is 

often used for segmentation since it labels each 

input picture pixel with a class. The segmentation 

supports many U-Net topologies. To put it simply, 

a U-Net consists of an encoding unit, a decoding 

unit, and the connections between them. The 

encoder applies a series of convolutions on the 

input picture, decreasing the output's 

dimensionality after each operation. Using the 

encoder's output, the decoder builds the input 

with each operation and ultimately aims to 

reconstruct the original picture. The duty of the 

decoder is simplified by the connections between 

the encoder and the decoder, which feed data 

about the original picture at different processing 

stages. By successfully executing such tasks, deep 

neural networks have shown their utility. Neural 
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networks, according to experts, offer new 

applications in areas where Deep Learning has 

been dominant. For instance, the images should 

be taken that current Generative Adversarial 

Networks create (GANs) [12]. The concept of 

competing networks is the foundation of GANs. 

One such network (D) uses a classifier-like 

approach to try to distinguish real photos from 

false ones. The objective of the subsequent 

network (G) is to create noise images with high 

similarity to the source images. For instance, in 

the field of medical imaging, competition between 

the two networks might help hone their abilities 

until one of them, denoted as (G), can produce 

unique images that differ significantly from the 

original while still falling within the score range 

of genuine images. There are several potential 

explanations for this, since it may be difficult to 

gather huge datasets of images with specified 

qualities in medical imaging owing to issues 

including expense, low illness prevalence, or an 

absence of patient consent. Hence, this method 

has helped with MR imaging, lung nodules, and 

skin lesions [13].  

AI application in nuclear cardiology 

We have shown how contemporary ML-based AI 

is opening up new possibilities for sophisticated 

estimate optimization and data analysis. It is 

crucial to comprehend that the kind and volume 

of data provided play a crucial role in choosing 

the ML algorithm that will be used. Huge volumes 

of numerical data have been generated in the 

field of cardiology via blood biomarker tests, 

genetic studies, and electronic health records, 

whereas both invasive and noninvasive imaging 

methods, provide immediate image data [14]. 

Machine learning-based distributions of image-

based diagnostic applications per disease and per 

modality are represented in Figures 4 and 5. 

Due to its greater radioactive count rates, higher 

spatial resolution, and reduced radiation load, 

PET imaging has a better performance profile. 

PET imaging gives improved picture quality, yet, 

most recent NC information has been gathered 

with SPECT because to its greater accessibility 

[15]. 

While the majority of NC data has been 

operationalized to convert image findings into 

structured numerical datasets [16], the SPECT 

and PET results are complex images for which 

Deep Learning is the most suited method to 

execute. The AI analysis of these datasets has 

been accomplished at a cheaper computing cost 

using ML methods other than Deep Learning. Full 

Deep Learning implementation is however 

starting to provide some intriguing outcomes. 

The next part will provide a summary of the 

evidence supporting the use of ML-based AI to 

analyze numerical and image data. 

 

Figure 4: Machine learning-based distributions of 
image-based diagnostic applications per disease 

 

Figure 5: Machine learning-based distributions of 
image-based diagnostic applications per modality 

Maximizing cardiac ischemia recognition and 

characterization 

Nuclear imaging has historically been used to 

diagnose coronary artery disease (CAD), with the 

visual interpretation of doctors being prone to a 
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broad range of variability depending on the 

reader's clinical expertise. The accuracy of 

automated CAD identification has been improved 

in early investigations using SPECT cardiac 

perfusion imaging (MPI) images as input. 

Surprisingly, SVM surpassed all quantitative 

evaluations as well as the two readers' visual 

interpretations. To increase the diagnostic 

precision of SPECT MPI, various characteristics 

were effectively merged in this research for the 

first time. The incorporation of new data and 

more in-depth analysis was a logical extension of 

the earlier work [17]. In reality, using the ECG 

Diamond-Forrester criteria, the subsequent 

research collected clinical data on age, sex, and 

the likelihood of having obstructive coronary 

artery disease, and merged it with quantitative 

perfusion factors using a machine learning 

algorithm (LogitBoost). In contrast to both 

quantitative TPD and ML which did not employ 

clinical data, the authors showed better CAD 

identification accuracy. This was a major 

discovery since it showed that the created ML 

process gave non-quantitative clinical factors 

substantial weight in a stepwise orderly manner. 

Nevertheless, a further innovation was made a 

few years later when researchers created a Deep 

Learning model that could immediately detect 

anomalies from SPECT images by imitating the 

interpretation of specialists. More precisely, the 

scientists looked at potential ischemia, rest, and 

stress abnormalities using stress and rest images 

and their differences. The resultant program was 

able to identify more than 5000 potential 

locations, which nuclear cardiologists classified 

as pathological or normal. The neural network 

was trained using these final evaluations of the 

candidate areas and other clinical characteristics. 

In a similar vein, Bentacur et al. fed and trained a 

Deep Learning network using raw and 

quantitative polar maps from SPECT MPI images 

[18]. Figure 6 illustrates the NC data or image 

processing workflow and supplementary variable 

integration. 

 

Figure 6: Nuclear cardiology data or image processing workflow and supplementary variable integration 

Such a model initially took several characteristics 

from the photos and moved them to a second 

phase included three completely linked layers. 

The output from each layer was a score for the 

identification of obstructive disease in the 

regions of the Left Anterior Descending (LAD), 

left circumflex (LCx), and right coronary (RCA) 

arteries [19]. The research indicated that CAD 

diagnosis was more accurate than traditional 

quantitative TPD, both on an individual patient 

and vascular level [20]. Therefore, it is obvious 

how ML has a high potential to assist doctors in 

identifying cardiac ischemia caused by CAD. 

Traditional statistical approaches and visual 

perception are constrained by the input of a 

particular source of data and the author's 

perspective, accordingly. Statistical, medical, and 

imaging data cannot be effectively integrated 
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without a more targeted and creative approach. 

This is now possible with the help of ML 

algorithms, and DL in particular conveys the most 

potential in immediate image analysis and 

identification [21]. 

Refinement of Prognostic Estimates in cardiac 

Ischemia 

It is difficult to predict cardiac ischemia-related 

Major Adverse Cardiovascular Events (MACE), 

and it is becoming increasingly obvious that a 

wide range of data, including data from 

demographic, clinical, diagnostic, and 

quantitative nuclear imaging studies, should be 

taken into account. Clinicians are under pressure 

to produce the best prediction result, ideally 

without resorting to unnecessary invasive 

procedures or underestimating the risk of 

outcomes. One possible solution is to use AI-

supported systems for integrating these variables 

and images [22]. ML has shown to be a far more 

effective technique for risk prediction based on 

the synthesis of multiple, and often freely 

available data. In the first trial, revascularization 

in patients with suspected CAD was predicted 

using clinical information paired with stress and 

rest TPD from SPECT MPI. Compared with 

traditional ischemia quantitative TPD, one out of 

two visual experts, and an algorithm trained with 

just stress data, a LogitBoost ML algorithm 

combining rest and stress TPD data predicted 

revascularization more accurately. Moreover, the 

authors showed a strong association between the 

ML-predicted MACE and the actual MACE when 

the ML scores were broken down into 

percentiles. By narrowing their focus to the very 

worst 5 percentiles, they also found a substantial 

population of patients who had been previously 

classified as "normal" based on visual and 

physical measures. In addition, a complete 

reclassification of five MACE risk groups resulted 

in a 30% improvement in MACE prediction and a 

5% reduction for patients who were MACE-free. 

This highlights the ML capability to precisely 

identify the most crucial factors. A very intriguing 

tool that might assist physicians in better 

understanding ML reasoning was presented, 

showing the role of each factor in establishing the 

risk score for each patient. Juarez-Orozco et al. 

succeeded in going one step further. As a means 

of forecasting the onset of global and localized 

myocardial ischemia using PET imagery, we 

employed a LogitBoost model trained using 

clinical and demographic information. They 

immediately contrasted their study, which took 

into account the factors supported by the ESC 

guideline models, to a conventional logistic 

regression method. Both the Gender and the 

SCORE variables, which were examined using 

both ML and conventional logistic regression, 

outperformed ML. This research focused on the 

ML utility in selecting features for the 

improvement of new ML models and identifying 

individuals for whom an expensive treatment like 

PET may be beneficial. Overall, our results lend 

credibility to the notion that ML-based AI might 

be used for the vitally crucial tasks of risk 

classification and MACE prediction [23]. 

Practitioners may be capable of making improved 

judgments when screening individuals with 

suspected or confirmed ischemic if the process of 

detecting ischemic is automated for risk 

prediction and enhancing patient choice for both 

surgical and non-surgical treatment options [24]. 

Potential Limitation of ML in Nuclear Cardiology 

While ML has boundless promise in NC and will 

inevitably play a part in patient treatment, 

several challenges should be answered before it 

can be successfully used in clinical care. Extensive 

training with complex data sets is necessary for 

ML algorithms to operate correctly and 

effectively. The acquisition of huge data sets 

presents a variety of challenges. The datasets 

should be initially exchanged across universities 

and de-identified. Second, it might take a while to 

get several institutional review board clearances 

merely to share data sets. The public availability 

of big data sets may make it possible to train ML 

algorithms. This is crucial for Deep Learning ML 

subtype in particular. For data standardization, 

some kind of global standard is required. While 

digital imaging and communications in medicine 

(DICOM) and the picture archiving and 

communications system (PACS) are very helpful 

for imaging data, there are some differences 
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across institutions. Each institution may use a 

different categorization system, adhere to a 

different set of rules, or use a separate set of 

acquisition processes. It is crucial to have a 

common or comparable coding system for data 

standardization to support the future expansion 

of ML in NC. It is beneficial to integrate patient 

data with imaging data to boost the ML 

architecture's precision. Nevertheless, many 

institutions do not use the same interface for 

clinical data from EMR and imaging software. It 

might be laborious to manually enter all the 

necessary medical data into imaging or machine 

learning systems. A smooth transition that can 

enhance machine learning training at institutions 

may be facilitated by some kinds of simpler data 

mining and exchange across these two interfaces. 

For all aspiring ML facilities, it is a blessing that 

the American Society of NC is compiling patient 

data into an image guide registry. The inability of 

machine learning to adapt to change is another 

important characteristic. It is challenging for the 

algorithm to accept patient or imaging 

information that has been previously saved, but it 

has changed over time [25]. To enable the ML 

algorithm to identify and integrate changes in 

patient or imaging information, some kind of 

external validation is required. The multi-center 

registries may require exposing the ML algorithm 

to a large range of features [26]. 

Prospects for the future 

In the context of NC diagnostic and prognosis 

optimization, Deep Learning has undoubtedly 

produced the most impressive outcomes [27]. 

Nonetheless, certain issues continue to present 

difficulties that need fresh approaches to be used 

to be resolved among which the unsupervised 

learning is concerned. Several experts think that 

overcoming unsupervised learning will result in a 

fundamental transformation in the ways that AI is 

used [28]. The bulk of the data we have at our 

disposal lacks labeling. Algorithms might be 

capable of learning from every information 

resource beyond the limitations of human 

perceptions if they were able to comprehend the 

broad and fine-grained patterns of this data alone 

without continual supervision that enables 

humans to modify their settings [29]. Learning 

with just some supervision is called semi-

supervision. To accomplish a task, like 

classification, in this case, less tagged data are 

employed with a larger number of unlabeled 

ones. Although the set of inputs is used to 

determine categories, the training dataset may be 

utilized to spot patterns and get insight into the 

data's general structure. The limits of AI, ML, and 

deep learning are constantly being pushed by a 

vast number of researchers via small and 

incremental advancements. Another emerging 

area is that of hybrid imaging, in which 

acquisitions of PET or SPECT and CT or MR may 

be made concurrently or sequentially if ML can 

take into account the structural relationship 

between the findings of different methods [30]. 

From our perspective, the future of NC can only 

bring about advancements in every area. 

However, for computers to comprehend the 

structures of unlabeled data and develop true, 

reliable AI, a revolutionary new concept is still 

required. 

Conclusion 

Nuclear cardiology methods like SPECT and PET 

imaging, which are used to diagnose cardiac 

ischemia and forecast harmful and perhaps fatal 

cardiovascular events, are certain to undergo 

significant change as a result of ML-based AI. 

With training on massive datasets, machine 

learning algorithms may find and use 

complicated data patterns to enhance these 

operations. DL is of special relevance in NC since 

it allows for direct analysis of cardiac images for 

the diagnosis and definition of myocardial 

ischemia and the danger of its related 

consequences. AI is not only desirable, but also it 

is essential for the future of NC as the orbits of 

autonomous quantification and ML gets ever 

closer together. To reach the full potential of 

machine learning, several challenges should be 

overcome, including those related to validation, 

data exchange, legal, financial, and the execution 

of several processes. The huge potential of ML 

has the potential to improve medical practice and 

patient care. 
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