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 Despite decades of significant research, task-based functional MRI cannot 
reliably predict individual differences in cognition. Furthermore, searching for 
methods with greater predictability alone is insufficient. We need to clarify 
how these techniques use brain input to create predictions in order to 
comprehend the links between cognition and the brain. In this study, we have 
applied the Interpretable Machine Learning (IML) framework to decode 
cognition from fMRI data and find the significant instants of the voxel time 
course. We compared the ability of three predictive models to decode 
cognitive states. The predictive IML models considered in the current study 
include an explainable boosting machine (EBM), a decision tree (DT) 
classifier, and linear regression (LR). Furthermore, the classification accuracy 
of Support Vector Machine (SVM) and Gaussian Naïve Bayes (GNB) classifiers 
is reported for cognitive state classification. The standard Star plus fMRI 
dataset with two cognitive tasks has been used in this study. Initially, a few 
voxels are selected using a clustering-based maximum margin feature 
engineering framework. Then, the IML models are built with selected voxels 
from fMRI data. The classification accuracy of 80%, 82%, 80%, 93.7%, and 
82% is achieved using EBM, DT, LR, SVM, and GNB classifiers, respectively. 
Moreover, the IML classifiers EBM, LDT, and LR can identify the significant 
instants of voxels. 
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Introduction 

Since the early 1990s, task-specific functional 

magnetic resonance imaging (fMRI) has been a 

popular tool for neuroscientists. From a 

neuroscience and neuroimaging standpoint, 

functional Magnetic Resonance Imaging (fMRI) 

can be utilised to non-invasively interpret human 

perception and semantic information of the 

cerebral cortex [1]. Researchers have effectively 

decoded visual cues associated with human brain 

neuron activity from fMRI data [2, 3]. Collecting 

fMRI signals and image samples are challenging 

due to the expensive fMRI research and the 

complex research method. Therefore, the 

quantity of fMRI signals and images is limited. 

The difficulties with brain decoding can be 

summed up as follows: fMRI signals are 

contaminated with noise, model mapping 

between brain activity, and visual stimuli is 

limited. There is a dearth of data that can be used 

to compare brain activity to visual stimuli [4]. 

Functional MRI signals have higher complexity 

and smaller sample size than the paired images. It 

is easy to experience the dimensionality curse 

when the model is trained using a small number 

of high-dimensional data samples. On the limited 

datasets, the standard approaches are easily 

overfitting. 

The collection and recording of fMRI signals of 

brain activity take a considerable time, and the 

decoding of brain activity is typically restricted to 

particular cognitive regions humans can 

understand. Functional MRI provides three-

dimensional brain pictures for a specified time 

and indirectly assesses brain activity. As a result 

of an underlying neuronal activity, active brain 

areas can be seen in the produced brain pictures. 

In contrast to the less active brain regions, active 

brain regions contain a large amount of 

oxygenated haemoglobin. The ratio of oxygenated 

to deoxygenated hemoglobin is considered for 

evaluating brain activity. Functional MRI has 

become a popular approach for locating brain 

regions active in cognition, emotion, and action. 

Brain connection networks have investigated 

methods to annotate or decode the cognitive 

state of the brain using the dependencies 

between brain regions.  

For the investigation of brain-related activities, 

including the classification of cognitive states [5] 

and the functional connectivity [6] of brain areas, 

fMRI data have been subjected to several 

machine learning algorithms. Due to machine 

intelligence techniques in computer vision, 

significant progress has been achieved in image 

analysis in recent years. Deriving brain-based 

prediction assessments of individual variations in 

cognitive ability is one objective of task-based 

fMRI [7]. However, the objective of obtaining a 

strong and predictable link between the brain 

and cognition through task-based fMRI is still 

mostly unmet [8]. Moreover, if we are unable to 

describe how a method uses data from various 

brain regions to create predictions, finding a 

method with a more vital predictive ability may 

not be sufficient.  

To anticipate the individual differences in 

cognition from task-specific fMRI data with 

improved predictive capacity, we intend to: 1) 

select algorithms that extract information across 

brain areas and 2) describe how these algorithms 

draw information to generate prediction using 

the Interpretable Machine Learning (IML) 

framework. There are many different ideas and 

theories of interpretability that researchers have 

attempted to explain. Interpretability has been 

described in terms of model fidelity, model 

transparency, model comprehension, and model 

trust [9]. The fidelity of the ML model and its 

explanation, i.e. the ML model should explain why 

it is generating a prediction or making a 

suggestion, is a key component of 

interpretability. This is frequently an important 

element of "user trust" [10]. The semantics of the 

features ought to be comprehensible at the 

feature level. In some ML models like regression 

and decision tree, the explanation is a component 

of the model itself. The IML models are often as 

precise as black box models. 

One of the IML models considered in this work is 

EBM, which is a generalized additive model 

(GAM). The gold standard for comprehensibility 

when lower-dimensional terms are taken into 

account is GAM. The GAMs have the form 

 (1) 
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Where, g is the link function, which adjusts the 

GAM to classification or regression, compared 

with typical GAMs, EBM has few advantages. 

Initially, EBM uses ML techniques like gradient 

boosting and bagging to learn the feature 

function fj of each feature. The boosting method 

is rigorously constrained to train on a single 

feature at a time in round-robin form with very 

small learning rates, making the order of the 

features irrelevant. To reduce the impacts of co-

linearity and train the appropriate feature value 

for each feature, it round-robin cycles through 

the features demonstrating how individual 

feature contributes the problem. Finally, E, BM 

has the ability to automatically recognize and 

incorporate pairwise interaction terms.  

 (2) 

EBMs further enhance the accuracy, while 

preserving interpretability. EBMs are very 

understandable since plotting allows one to see 

and comprehend how each feature contributes to 

the final prediction. Due to the additive nature of 

EBM, each feature contributes to the forecast in a 

modular manner that facilitates understanding 

the role each feature in the prediction.   

In this work, we have used IML models such as 

explainable boosting, decision tree, and logistic 

regression to decode the cognitive states from 

fMRI data, and to find the significant instants 

present in the voxel time course. The rest of the 

article is organised as follows: the earlier related 

work is covered in section II. Section III explains 

the proposed IML classifier model for cognitive 

state classification. In section IV, a short 

description of Starplus fMRI data is covered. The 

results of the proposed IML technique using 

Starplus fMRI data are elaborated in section V, 

and conclusions are presented in section VI.   

Related work  

Multi-voxel pattern analysis (MVPA), in 

conjunction with machine learning (ML), has 

recently gained popularity as a technique for 

determining the cognitive states. The 

effectiveness of brain decoding has been 

significantly enhanced by utilising learning 

models to decipher fMRI signals that record brain 

activity [11]. Although a decoding framework 

based on MVPA has been established, the multi-

voxel pattern analysis decoding framework is 

difficult to read, specifically for linear kernels. 

Furthermore, this method is vulnerable to image 

flaws such as eye movement and other artifacts. 

Likewise, it is crucial to consider the 

hemodynamic responsiveness activity, the rate of 

neuron vascular connection, and the signal-to-

noise percentage of fMRI findings. In addition to 

be sought, the hardware's processing speed and 

algorithmic effectiveness should also take into 

account the brain's blood coupling latency [12]. 

Though the results of the current ML-based 

decoding model are adequate [13]. The ML 

models to recreate the associated stimuli from 

fMRI data still face several difficulties to produce 

a higher-precision decoding model. 

In general, the sample size of fMRI data is small 

compared to the dimensionality of the data. The 

quantity and dependability of the training 

samples determine the effectiveness of ML-based 

models. Numerous brain activities are observed, 

along with various images corresponding to 

those actions. Image reconstruction techniques 

and quality may be enhanced [14]. However, the 

duration of the experiment should match its 

effectiveness. The selection of the contributing 

factors' essential qualities is incredibly crucial. 

The capacity of the decoding model to extract key 

features from neuroimaging data must be further 

improved to choose the essential features that 

are most crucial to image reconstruction. It can 

gain knowledge from the axiomatic attribution 

[15] and visual attention [16] techniques used 

during computer vision to identify the neuronal 

voxels that are most important for decoding 

visual stimuli. 

One of the primary goals of neuroscience study is 

to understand the interconnections in the brain 

network that underlies human cognition. 

However, since gathering and capturing fMRI 

signals of human brain activity take a while, the 

current decoding of brain activity is typically 

restricted to certain cognitive regions humans 

can understand [17]. Most current learning-based 

studies cannot simultaneously consider the 

functional reliance and time dynamics across 
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various brain areas. To make use of the 

interdependence between the brain areas, graph 

convolution networks (GVN) have been utilized 

to decode the cognitive states. In GCN, the 

extracted representations include temporal 

dynamic information and functional 

dependencies among the regions in the brain 

[18]. The other new learning techniques are 

extremely accurate, but also unfortunately 

difficult to understand, including random forests, 

boosted trees, kernelized SVMs, bagged trees, 

neural nets, and combinations of these 

techniques. It is still difficult to employ any of 

these techniques to solve mission-critical issues 

like healthcare, in particular, because it is 

typically unethical to alter the care provided to 

patients to gather data sets. In the case study of 

pneumonia risk prediction, the IML model reveals 

unexpected patterns in the dataset that, in the 

past, would have made it impossible for complex 

learned models to be applied in this field [19].    

In this work, we describe the application of IML 

models to the cognitive state classification 

problem and find the significant time instants 

present in the voxel time course. This class of 

models, in our opinion, represents a substantial 

advancement in developing highly accurate and 

understandable models. The primary 

contributions of this study are: The proposed 

IML-based technique is elaborated in the next 

section.  

Proposed IML-based cognitive state classification 

This study aims to develop Interpretable Machine 

Learning (IML) models for cognitive state 

classification. The study has been developed on 

three glass box models Explainable Boosting 

Machine (EBM), Decision Tree (DT) classifier, and 

Logistic Regression (LR). Likewise, we have 

developed two black box models, Support Vector 

Machine (SVM) and Gaussian Naïve Bayes (GNB) 

for decoding the cognitive states. The sample 

diagram of the proposed IML-based cognitive 

state classification is displayed in Figure 1. 

 

 

Figure 1: The proposed IML-based cognitive state classification

The proposed framework is a four-step approach 

for decoding the cognitive states and finding the 

significant instants of selected voxels with proper 

expiations using fMRI data. The description of 

each step is given in the following. 

Step 1: Select the specific number of brain 

regions or Regions of Interest (ROIs) from the 

fMRI data. 

In general, fMRI data consists of more ROIs. 

Therefore, it is often required to select ROIs 

before developing a model. Since the current 

study is on cognitive task classification, we select 

the required number of ROIs for each cognitive 

task in this step. 

Step 2: Select a few voxels from the selected ROIs. 

The fMRI data comprises ROIs, and each ROI 

consists few hundred voxels. It is computationally 

challenging to run ML models with all the existing 

voxels as features. Hence, it is required to select a 

few voxels from the pool of selected voxels. In 

this step, we choose a minimum number of voxels 

using a clustering-based maximum margin 
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framework [20]. The frame initially partitions the 

voxels into clusters and tries to find the 

maximum margin among voxels for given pair of 

tasks [21]. 

Step 3: Build interpretable Machine Learning 

(IML) models for cognitive state classification. 

The voxels selected from Step 2 are used to form 

feature vectors for cognitive task classification. 

Instead of simply building a classifier model for 

the required task, it is always recommended to 

find the explanations from the classifiers while 

performing classification.  

Let C = {vi, yi}, represents a training dataset, 

where vi = (vi1, vi2, vi3, …, vik) denotes a feature 

vector with k features, and ti is the response 

(target). vj denotes the jth time instant or data 

point in the feature space. One of the IML models 

considered in this work is EBM, which explains 

the obtained classification accuracy in terms of 

time instants or data points present in the feature 

vector.   

In this context, we have considered three glass 

box models such as EBM, DT, and LR classifiers, 

and two black box models such as SVM, and GNB, 

for cognitive state classification. 

Step 4: Interpretability is crucial to determine 

how ML algorithms conclude from the data. 

Similarly, while decoding the cognitive states 

using fMRI data from the selected voxels, the 

interpretation is essential to understand the fMRI 

dataset and operation of ML algorithms. In this 

step, we determine the significant instants of the 

selected voxels using the results obtained from 

IML models such as EBM, DT, and LR classifiers.   

The performance of the stated approach IML-

based cognitive task classification is examined on 

the StarPlus fMRI dataset [22]. A short 

description of StarPlus fMRI dataset is given in 

the next section. 

StarPlus fMRI data 

Starplus fMRI data [22] have been used to 

confirm the performance of the proposed 

technique. StarPlus data offers readily available 

fMRI data for the classification and investigation 

of the cognitive states of the human brain. The 

dataset was produced by Carnegie Mellon 

University researchers. Since it was publicly 

available, many people have used the data for 

analysis. A set of trials are created using captured 

brain volumes. To correctly negotiate for each 

trial, subjects were asked to ascertain whether a 

statement or symbol was followed by another 

statement or sign. In the initial stage, the subject 

was given the option of one of two sentences: 

"The Star is above the Plus" or "The Star is below 

the Plus." This will vanish from the screen after 

four seconds, and the next four seconds will show 

an empty screen. Following a four-second 

interval with the screen blank, an image stimulus 

will be displayed for four more seconds. Every 0.5 

seconds during the experiment, brain images are 

recorded. In the second phase, the experiment is 

repeated, but this time the picture and sentence 

stimuli are switched. The dataset's individuals 

have about 5000 voxels that have 25 ROIs 

assigned to them. Seven out of 25 ROIs, according 

to the literature are considered for the analysis. 

These seven ROIs include: {LDLPFC, LIPS, CALC, 

LOPER, LT, LIPL, and LTRIA}, which are used for 

the cognitive state classification.  

Results and Discussion  

Although Machine Learning classifiers have been 

used for cognitive state classification, the 

interpretability of the obtained results is not 

clearly explored. Especially while handling the 

medical dataset, explainability or interpretability 

is most important. We have developed 

Interpretable Machine Learning classifiers for 

cognitive state classification using fMRI data in 

this work. In this context, we have developed 

glass box models such as EBM, DR, and LR 

classifiers and black box models such as SVM and 

GNB. The framework begins with the selection of 

ROIs from the fMRI data. It proceeds to select 

relevant voxels from the pool of ROIs using the 

clustering-based maximum margin criteria.  

The IML models are applied to the StarPlus fMRI 

dataset. The dataset consists of 25 ROIs, of which 

seven ROIs are considered (as per the description 

given on the website) for cognitive state 

classification. The dataset comprises six 

participants' fMRI data for analysis. The dataset 

has 40 samples for each task (picture and 

sentence tasks). The ROI pool consists of 
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approximately 500 voxels, out of which four 

voxels are selected using feature selection 

criteria. Each voxel time course has 16 data 

points, so the length of the feature vector is 

defined using 64 data points. The classification of 

cognitive tasks is performed in a training-test 

fashion, where 75% of the data is used for 

training and 25% of the data for testing.  

Figure 1 describes the overall importance of data 

points in terms of their mean absolute score for 

cognitive state classification using the EBM 

classifier. The EBM is a generalized additive 

model with automatic interaction detection. 

Modern black box models can sometimes be as 

accurate as EBMs, but EBMs are much easier to 

understand. EBMs are incredibly quick at 

prediction time. EBMs are very understandable 

because it is possible to visualize and 

comprehend how each feature contributes to a 

final prediction. Since each voxel in the StarPuls 

fMRI has a length of 16, and four voxels are 

selected for cognitive state classification, the 

length of the feature vector becomes 64. For 

example, Figure 2 shows the overall importance 

of data points (features) considered by the EBM 

for the classification problem. The length of the 

feature vector for each sample is 64 (64 features 

or data points from t0 to t63). From Figure 2, it is 

observed that the EBM considers the data points: 

t38, t33, t60, t52, t34, t11, t4, t36, t19, t59, t56, 

t61, t21, t47, and t53 for cognitive state 

classification. In the actual notation of the voxel 

time series, t38 is the 7th instant of voxel V3, t33 

is the 2nd instant of voxel V3, t60 is the 13th 

instant of voxel V4, and t52 is the 5th instant of 

voxel V3. Similarly, other features/data points are 

identified from the obtained results.  

Figures 3, 4, and 5 present the top three feature 

scores and densities obtained from the EBM. 

From the plots, it is observed that these features 

have high discrimination power for the 

classification task.  

 

Figure 2: Overall importance of the features 

 

Figure 3: Density and score of feature t38 
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Figure 4: Density and score of feature t33 

 

Figure 5: Density and score of feature t60 

The data points have significantly good scores for 

discriminating the classes. For example, Figure 6 

reveals the explanation for classifying class 1 

(picture task) as class 1 (picture task), with an 

absolute score of 89.3. Similarly, Figure 7 

presents the explanations for predicting class 2 

(sentence task) as class 2 (sentence task) with an 

absolute score of 99.9, and Figure 8 indicates the 

prediction of class 1 as class 2. In Figure 9, we can 

see the tree diagram and features considered for 

the classification task by the decision tree 

classifier. The tree finds t61, t30, t59, t29, and t35 

as key nodes. The tree has emerged from the 

feature t61 (feature) and splits into two branches 

across features t30 and t59. The tree makes the 

decision as per the purity associated with the 

specified branch. It is always suggested to have 

low impurity in making a decision. The other IML 

model considered in this study is LR. Figure 10 

presents the significant features considered by 

the LR classifier while predicting the class of the 

objects.  

 

Figure 6: Explanation the prediction of class 1 
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Figure 7: Explanation the prediction of class 2 

 

Figure 8: Explanation for the prediction of class 2 while the actual class is 1 

 

Figure 9: Tree diagram of DT classifier 

 

Figure 10: The overall importance of features and their coefficients considered by the Logistic regression 
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The cognitive state classification accuracy of both 

glass box and black box models is presented in 

Table 1. From the obtained results, it is observed 

that the SVM classifier achieves a classification 

accuracy of 93.7%. The IML models can achieve 

acceptable accuracy for cognitive task 

classification. Likewise, the IML models provide 

explanations like how the models obtain the 

accuracy, which helps to identify the significant 

instants of voxels present in the fMRI data. All the 

simulations are carried out in Python using 

Interpret ML library package [23]. 

The study’s contributions include: (1) The 

proposed Cognitive state classification 

framework can achieve acceptable classification 

accuracy with four voxels when applied to 

StarPlus fMRI dataset (2). The applied IML 

classifiers (EBM, DT, and LR) help to identify the 

significant instants of voxels while achieving 

acceptable classification accuracy, which is very 

useful while handling mission-critical healthcare 

dataset. 

Table 1: Classification accuracy of various classifiers while classifying picture and sentence task 

S No. Model type Classifier Accuracy (%) 

1  

Black box 

SVM 93.7 

2 GNB 81.2 

3  

Glass box 

Explainable Boosting 80 

4 Decision tree 82 

5 Logistic regression 80 

 

Conclusion  

This study presents the Interpretable Machine 

Learning (IML) models for classifying cognitive 

tasks. In the classification task, it is essential to 

know the features that contribute more to 

classification. The standard black box ML models, 

such as SVM and GNB, do not provide the overall 

significance of features while classifying the 

objects. Furthermore, it is crucial while 

predicting the class of the objects from health 

care datasets like fMRI. The current study 

identifies the significant instants of voxels using 

IML models. The IML models are applied to the 

cognitive dataset. The IML models in work 

include Explainable Boosting Machine, Decision 

Tree, and Logistic Regression classifiers. Before 

applying the models to the cognitive dataset, a 

few (four) voxels are selected using a clustering-

based maximum margin voxel selection 

framework. Voxels are chosen from a pool of 

ROIs. The models are examined on the Standard 

StarPlus fMRI dataset. The IML models provide 

the overall importance of features while 

classifying a pair of cognitive tasks. The 

classification was performed in a train-test 

fashion, with 75% data for training and 25% of 

data for testing. The IML models achieve an 

average classification accuracy of 80%, whereas 

the black model, the SVM classifier, achieves a 

classification accuracy of 93.7%. The applied IML 

models help to find the significant instants of 

voxels from the cognitive fMRI dataset with 

acceptable classification accuracy. 
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