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 Polyethylene glycol (PEG) was used for a wide range of medical and biological 
applications. The health problems that PEG can cause is the conversion of 
alcohol dehydrogenase by metabolic oxidation into oxalate. Moringa oleifera 
contains about 46 antioxidant compounds such as β-carotene and various 
phenolics. Previous studies did not report enough data on the hepatotoxicity 
of polyethylene glycol and the protective role of Moringa oleifera. Therefore, 
the current study was conducted to address this affair. Male rats were split for 
six set (six each group): control group 1, MOLE (200 mg/ kg) group 2, PEG (50 
mg/kg) group 3, MOLE plus PEG (50 mg/kg) group 4, PEG (100 mg/kg) group 
5, and MOLE plus PEG (100 mg/kg) group 6. Rats administered orally daily for 
45 days. The obtained results showed that treatment with both doses of PEG 
caused significant increase in DNA breakages, TNF-α, IL-6, TBARS, and NOx 
comparison to group 1. While, both doses of PEG caused significant 
suppressed expression of PGC-1α and mtTFA, the P53 level, catalase, GR, and 
GSH were decline, as compared with group 1. It was concluded that the co-
supplementation with MOLE caused significant hepatoprotection against PEG- 
induced liver toxicity at all levels. 
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Introduction 

Polyethylene glycols (PEG) are polyether 

compounds which are widely used as additives in 

food, pharmaceuticals, and cosmetics [1]. 

Polyethylene glycol (PEG), also known as 

macrogol, is a polyether consisting of ethoxy 

units derived from the ring-opening 

polymerization of ethylene oxide [2]. PEG may 

reach sewage systems due to its use in industry 

[3]. It contains a huge amount of oxygen atoms 

and hydroxyl groups, and both can form 

hydrogen bonds [4]. The metabolism process of 

PEG involved successive oxidation via alcohol 

dehydrogenase (ADH) and aldehyde 

dehydrogenase (ALDH). This series of sequential 

reactions can be converted into the toxic 

receptors. The polyethylene glycol metabolites 

produce the renal destruction via mechanisms 

similar to those involved in the renal failure 

associated with ethylene glycol poisoning [5]. 

Moringa oleifera Lam, a fast-growing tree, was 

originated from India [6]. Various parts of 

Moringa included the paramount minerals and 

considered as a perfect source of protein and 

vitamins, different phenols, and act as antitumor, 

antioxidant, and hepatoprotective [7]. It leaves 

considered as a potential origin of natural 

antioxidants and the extracts capable of 

scavenging peroxyl and superoxyl radicals [8]. 

Therefore, the present study investigated the 

potential activity of MOLE as an antioxidant agent 

against the hepatotoxicity induced by PEG in 

male rats. 

Materials and Methods 

Tested compounds  

Polyethylene glycol 1500 (PEG, purity 99.9 %) 

was purchased from Central Drug House Ltd., 

New Delhi, India. Moringa oleifera leaves extract 

(MOLE) was purchased from National Research 

Center, Dokki, Cairo, Egypt. 

Animals and experimental groups  

Wister male rats were used in the current study. 

Animals were obtained from Faculty of Medicine, 

Alexandria University, Alexandria, Egypt. This 

study was confirmed by Animal Care Committee 

and met all guide lines for its use (Institutional 

Animal Care and use Committee; ALEXU- IACUC). 

Animals were housed in a stainless-steel wire 

cages, maintaining a basic diet (food and water 

adlibitum) at a suitable and airtight ambience 

(temperature of 25 ± 5 °C, 50-70% humidity). 

Rats were divided into six equal groups (n = 6), 

and then the animals were kept for 14 days of 

adaptation. Group 1, control in which healthy 

untreated rats; group 2, MOLE 200 mg/kg; group 

3, PEG 50 mg/kg; group 4, MOLE + PEG 50 

mg/kg; group 5, PEG 100 mg/kg; and group 6, 

MOLE + PEG 100 mg/kg. Doses were given daily 

for 45 consecutive days. The selected doses of 

polyethylene glycol and Moringa oleifera leaves 

extract were based on  Diab et al. and Jaiswal et 

al. [9, 10], respectively. 

Blood samples collection and tissue preparation 

After 45 days have ended, the rats were 

anesthetized with isoflurane and sacrificed. 

Sample of blood were collected in test tubes 

containing heparin as an anticoagulant. Plasma 

was separated from the blood by centrifuging at 

860×g for 20 min and preserved at -80 °C for 

analysis. The liver was instantly removed and 

washed with the cold saline solution to carefully 

remove the adhered fat connective tissues. 

Separately, part of the liver was homogenized 

(10%, w/v) in the ice-cold sucrose buffer (0.25 

M) in a Potter–Elvehjem type homogenizer, and 

then the homogenates were centrifuged at 

10,000×g for 20 min at 4 °C. To pellet the cell 

debris, the supernatant was collected and saved 

at -80 °C for the determination of the rest of 

parameters. 

Body and organs weights 

The initial and final weights of the rats were 

recorded. Likewise, the weights of the livers were 

recorded instantly after their removal and dried 

on tissue papers. 

Quantitative analysis of hepatic gene expression of 

mitochondrial transcription factor A (mtTFA) and 

peroxisome proliferator activator receptor 

gamma-coactivator 1α (PGC-1α) using RT-PCR 
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The quantitative expression analysis of PGC-1α 

and mtTFA in liver tissue were performed using 

for the relative quantitative determination of the 

gene expression of mtTFA [11] and PGC-1α [12] 

at mRNA level according to the manufacturer 

instructions. The primes sequences were used as 

follow: PGC-1α; F-5-AAACTTGCTAGCGGTCCTCA-

3, and R- 5-TGGCTGGTGCCAGTAAGAG-3, mtTFA; 

F-5-CCTTCGATTTTCCACAGAACA-3, R-5-

GCTCACAGCTTCTTTGTATGCTT-3, and GAPDH; F-

5'-GGGTGTGAACCACGAGAAATA-3' and R-5' 

AGTTGTCATGGATGACCTTGG3'. 

Assay of DNA breakages 

The DNA breakages, as an indicator of cell death, 

were assayed according to the method of Wu et 

al. [13]. 

Enzyme linked immunosorbent assay (ELISA)  

The homogenates of liver tissues were used for 

the determination of tumor necrosis factor-alpha 

(TNF-α; cat. no. ab100785), interleukin‑6 (IL‑6; 

cat. no. ab100772) and p53 (cat. no. ELR‑p53‑1; 

RayBiotech, Inc.), by using respective ELISA kits 

(Abcam) according to the manufacturer 

instructions. 

Markers of oxidative stress 

The TBARS level was determined according to 

Draper and Hadley [14]. Nitric oxide (NOx) gives 

nitrites and nitrates in the deproteinized 

samples; the Griess was used to determine the 

concentrations of the final products, after that 

reduction of nitrate to nitrite was occurred. The 

diazotization removal was carried out and the 

NOx level was determined from the slope of the 

standard curve constructed using a serial 

concentration of sodium nitrite according to 

Montgomery and Dymock [15].  

Reduced glutathione (GSH), glutathione -S-

transferase (GST; EC 2.5.1.1.18), glutathione 

peroxidase (GPx; EC 1.1.1.9), and glutathione 

reductase (GR; EC 1.6.4.2) were determined 

according to the described methods by Ellman, 

Habig et al., Pagila and Valantin, and Panfili et al. 

[16-19], respectively. Kits were purchased from 

Bio diagnostic, Egypt. 

Biochemical parameters 

Plasma total protein (TP) concentration was 

measured according to Armstrong and Carr [20]. 

The total, direct, and indirect bilirubin 

concentrations were measured according to the 

method described by Price [21].  

Aspartate aminotransferase (AST) (AST; EC 

2.6.1.1) and alanine aminotransferase (ALT) 

(ALT; EC 2.6.1.2) were measured by the method 

of Reitman and Frankel (1957). Alkaline 

phosphatase (AlP) (AlP; EC 3.1.3.1), acid 

phosphatase (AcP) (AcP; EC 3.1.3.2), and gamma-

glutamyltransferase (γ-GT) (γ-GT; EC 2.3.2.2) 

were measured according to the described 

methods by Belfield and Goldberg, Daniel et al., 

and Persijin, and Van der Slike [22-24], 

respectively. 

Catalase (CAT; EC 1.11.1.6) was determined 

according to the method described by Sinha [25]. 

Superoxide dismutase (SOD, EC 1.15.1.1) was 

assayed according to the method described by 

Nishikimi [26]. 

Drug metabolizing enzymes  

The total hepatic content of the cytochrome b5 

and cytochrome P450 were estimated by the 

method of Omura [27]. The activity of NADPH-

cytochrome C- reductase was assayed according 

to the method of Williams and Kamin [28], the 

activity of amidopyrine N-demethylase was 

measured according to Nash [29] and the activity 

of aniline 4-hydroxylase was measured according 

to the method described by Kato and Gillette [30]. 

Statistical analysis 

Mean and standard error values were determined 

for all the parameters and the results were 

expressed as mean ± standard error. The data 

were analyzed using a one-way analysis of 

variance (ANOVA) followed by Duncan multiple 

comparison. 

Percentage of change = (mean of treatment – 

mean of control) / mean of control×100 
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Results and Discussion 

The obtained data showed that treatment with 

PEG of both doses and MOLE caused insignificant 

effects on body (Figure 1) and liver weights (data 

are not shown). A low dose of PEG caused an 

insignificant effect on the hepatic expression 

PGC-1α, while the high dose caused significant 

suppression, as compared with the control group. 

The PEG treated rats showed marked 

suppression of the expression of mtTFA at all 

doses, as compared with control. Moreover, the 

co-treatment of PEG plus MOLE substantially 

increases PGC-1α and mtTFA in liver tissue, as 

compared with PEG treated rats. The DNA 

breakages significantly increased in 50 and 100 

mg/kg of PEG when compared with the control 

group. Meanwhile, MOLE substantially decreased 

the DNA breakages in the co-treatment group of 

50 and 100 mg/kg of PEG, as compared with PEG 

(50 and 100 mg/kg) alone (Table 1 and Figure 2).

 

Figure 1: Initial and final body weight of male rats 

Table 1: The effect of polyethylene glycol (PEG) and Moringa oleifera leaves extract (MOLE) on liver gene 

expressions of mitochondrial transcription factor A (mtTFA), gene expression of peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PGC-1α), and DNA breakages of male rats 

Experimental Groups Parameter 

mtTFA 

(Fold change) 

(PGC-1α)  

(Fold change) 

DNA breakages 

% 

Control 1.0±0.27ab 1.0±0.13ab 13.4±0.53c 

MOLE 1.2±0.03ab 

(22%) 

1.4±0.13a 

(42%) 

12.7±0.87c 

(-5.05%) 

PEG (50 mg/kg) 0.4±0.04c 

(-59%) 

0.7±0.08b 

(-22%) 

24.3±1.37ab 

(980.45%) 

PEG (50 mg/kg) +MOLE 1.4±0.16a 

(49%) 

1.2±0.11a 

(28%) 

15.8±0.96c 

(17.89%) 

PEG (100 mg/kg) 0.3±0.07c 

(-62%) 

0.2±0.02c 

(-72%) 

27.3±1.83a 

(102.89%) 

PEG (100 mg/kg) +MOLE 0.7±0.07bc 

(-27%) 

0.8±0.10b 

(-20%) 

22.0±0.67b 

(63.99%) 

The results are expressed as (Mean ± SE, n=6) 
abc Mean values within a column not sharing common superscript letters were significantly different, p< 0.05.  

The number between parentheses is the percentage of change from control value 
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Figure 2: The effect of polyethylene glycol (PEG) and Moringa oleifera leaves extract (MOLE) on liver gene 
expressions of mitochondrial transcription factor A (mtTFA), gene expression of peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PGC-1α), and DNA breakages of male rats

Results presented in Table 2 and Figure 3 showed that TNFα and IL-6 significantly increased in rats 

treated with PEG alone, as compared with the control group. Meanwhile, the treatment of rats with 

MOLE significantly decreased TNFα and IL-6 of groups treated with PEG 50 + MOLE and PEG 100 + 

MOLE, as compared with PEG 50 and PEG 100, respectively. On the other hand, P53 significantly 

decreased in rats treated with PEG alone, as compared with the control group. Meanwhile, P53 

significantly increased in the group PEG 50 + MOLE and PEG 100 + MOLE, as compared with PEG 50 

and PEG 100. 

Table 2: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on liver expression 
of tumor necrosis factors α (TNFα), interleukin 6 (IL-6), and expression of tumor suppressor P53 (P53) of male 

rats 

Experimental Groups 
Parameter 

TNF-α 
(pg/mg protein) 

IL-6 
(pg/mg protein) 

P53 
(pg/mg protein) 

Control 3.57±0.38d 1.08±0.03d 4.10±0.05ab 

MOLE 
4.00±0.48d 
(12.04%) 

1.27±0.05d 
(18.13%) 

4.14±0.12a 
(0.87%) 

PEG (50 mg/kg) 
39.9±1.86b 

(1018.76%) 
21.8±1.21b 

(1924.97%) 
3.64±0.13c 
(-11.20%) 

PEG (50 mg/kg) + 
MOLE 

27.9±1.77c 
(684.03%) 

11.0±0.48c 
(918.50%) 

4.04±0.04ab 
(-1.51%) 

PEG (100 mg/kg) 
60.0±1.58a 

(1582.35%) 
29.6±0.80a 

(2638.20%) 
3.5±0.14c 
(-13.49%) 

PEG (100 mg/kg) + 
MOLE 

38.4±2.92b 
(977.87%) 

20.6±0.69b 
(1806.56%) 

3.7±0.05bc 
(-7.57%) 

The results are expressed as (Mean ± SE, n=6) 
abc Mean values within a column not sharing common superscript letters were significantly different, p< 0.05. The 

number between parentheses is the percentage of change from control value 

 

The obtained data showed that cytochrom b5 and 
P450 significantly increased and substantially 
decreased in doses of 50 and 100 of PEG, 
respectively, as compared with the control group. 
N-demethylase and NADPH cytochrome C-
reductase substantially increased in the rats 
treated with both doses of PEG at doses of (50 

and 100 mg/kg), as compared with the control 
group. Meanwhile, treatment with MOLE 
significantly decreased these enzymes in the co-
treatment group at doses of 50 and 100 mg/kg of 
PEG in comparison to PEG treated alone. Aniline 
4-hydroxylase significantly increased and 
substantially decreased in rats treated with PEG 
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alone, as compared with the control group. 
However, co-administration with MOLE 
significantly inhibited this enzyme compared 
with PEG treated. Cytochrome b5 (nmol 
cytochrome/mg protein), Cytochrome p450 
(nmol cytochrom/mg protein), Amidopyrine N-

demethylase (mol/min/mg protein), Aniline 4- 
hydroxylase (mol/min/mg protein) and NADPH 
cytochrome C-reductase (mol cytochrome C 
reductase/mg protein/min) (Table 3 and Figure 
4).  

 

 

Figure 3: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on liver 
expression of tumor necrosis factors α (TNFα), interleukin 6 (IL-6), and expression of tumor suppressor P53 

(P53) of male rats 

Table 3. The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on hepatic 

cytochrome b5, cytochrome P450, amidopyrine N-demethylase, aniline 4-hydroxylase, and NADPH cytochrome C-

reductase of male rats 

Experimental Groups 

Parameter 

 

Cytochrome b5 
Cytochrome 

p450 

Amidopyrine N-

demethylase 

Aniline 4- 

hydroxylase 

NADPH 

cytochrome 

C- reductase 

Control 0.3±0.01b 0.6±0.05cd 0.1±0.007d 0.2±0.005b 2.5±0.11d 

MOLE 
0.7±0.04a 

(106.08%) 

1.2±0.04b 

(81.42%) 

0.3±0.008ab 

(87.95%) 

0.2±0.005b 

(1.04%) 

2.4±0.10d 

(-4.53%) 

PEG (50 mg/kg) 
0.7±0.03a 

(103.96%) 

1.4±0.09a 

(104.20%) 

0.3±0.01a 

(92.16%) 

0.3±0.008a 

(13.98%) 

5.4±0.08b 

(111.92%) 

PEG (50 mg/kg) + 

MOLE 

0.3±0.01b 

(5.55%) 

0.8±0.04c 

(21.48%) 

0.2±0.007c 

(43.97%) 

0.2±0.01c 

(-20.27%) 

4.4±0.08c 

(74.11%) 

PEG (100 mg/kg) 
0.2±0.003c 

(-23.54%) 

0.5±0.005de 

(-14.80%) 

0.3±0.007a 

(95.18%) 

0.2±0.01c 

(-17.48%) 

6.2±0.07a 

(143.99%) 

PEG (100 mg/kg) + 

MOLE 

0.2±0.009c 

(-28.83%) 

0.5±0.01e 

(-24.96%) 

0.2±0.01b 

(72.89%) 

0.3±0.007a 

(15.73%) 

1.9±0.21e 

(-22.25%) 

The results are expressed as (Mean ± SE, n=6). 
abc Mean values within a column not sharing common superscript letters were significantly different, p< 0.05. The 

number between parentheses is the percentage of change from control value. 

 



 Ibadi E.A., et al. / J. Med. Chem. Sci. 2023, 6(4) 907-919 

913 | P a g e  

 

 
Figure 4: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on hepatic 

cytochrome b5, cytochrome P450, amidopyrine N-demethylase, aniline 4-hydroxylase, and NADPH cytochrome C-
reductase of male rats 

It was observed that GR, GST, GPx, and GSH 

significantly decreased in animals treated with 

PEG alone in a comparison with the control 

group. Meanwhile, the MOLE administration 

significantly increased GR, GPx, and GST in the 

groups of PEG50 + MOLE and insignificantly 

changed GSH, as compared with PEG alone. 

However, GR significantly increased in animals 

treated with PEG 100 + MOLE, and GPx and GST 

significantly decreased, while GSH significantly 

changes, as compared with PEG, alone. The result 

showed that SOD in animals treated with PEG at 

dose 50 mg/kg caused an insignificant change 

and at dose 100 mg/kg caused significantly 

increased, as compared with the control group. 

Meanwhile, treatment with MOLE significantly 

decreased in the co-treatment in comparison to 

PEG treated alone. On the other hand, catalase in 

both doses of PEG caused a significant decrease 

compared with the control group. Nevertheless, 

in groups treated with PEG 50 + MOLE caused a 

substantial decline compared with PEG 50 and 

significantly increased in PEG 100 + MOLE, as 

compared with PEG 100 mg/kg (Table 4 and 

Figure 5). 

Table 4: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on liver glutathione 

reductase (GR), glutathione peroxidase (GPx), glutathione-S transferase (GST) reduced glutathione (GSH), 

superoxide dismutase (SOD), and catalase of male rats 

Experimental 

Groups 

Parameter 

GR 

(IU/mg 

protein) 

GPx 

(IU/mg 

protein) 

GST 

(IU/mg 

protein) 

GSH 

(IU/mg 

protein) 

SOD 

(IU/mg 

protein) 

Catalase 

(IU/mg 

protein) 

Control 75.9±1.25a 141.1±3.1a 5.3±0.23c 1.4±0.06b 133±17.51b 261±45.51a 

MOLE 
92.0±1.03a 

(21.17%) 

109.5±3.7b 

(-22.39%) 

8.3±0.57a 

(55.47%) 

1.6±0.06a 

(12.03%) 

136±10.47b 

(2.24%) 

227±112.4a 

(-12.94%) 

PEG (50 mg/kg) 
49.9±2.89c 

(-34.25%) 

65.6±4.2d 

(-53.45%) 

4.0±0.13d 

(-23.31%) 

0.6±0.01e 

(-56.15%) 

132±34.63b 

(-1.04%) 

148±146.5c 

(-43.01%) 

PEG (50 mg/kg) + 

MOLE 

58.8±1.43b 

(-22.48%) 

92.8±4.61c 

(-34.21%) 

5.4±0.13c 

(1.61%) 

0.5±0.01e 

(-61.47%) 

118±37.98c 

(-11.36%) 

111±42.95d 

(-57.21%) 

PEG (100 mg/kg) 
25.2±0.58e 

(-66.74%) 

156.6±6.9a 

(11.00%) 

6.7±0.15b 

(26.18%) 

0.7±0.03d 

(-45.57%) 

144±4.62a 

(7.84%) 

135±51.5cd 

(-48.10%) 

PEG (100 mg/kg) + 

MOLE 

43.8±0.80d 

(-42.26%) 

90.8±2.62c 

(-35.64%) 

3.9±0.12d 

(-26.63%) 

1.2±0.06c 

(-10.78%) 

136±21.05b 

(1.79%) 

187±53.7b 

(-28.11%) 

The results are expressed as (Mean ± SE, n=6). 
abc Mean values within a column not sharing common superscript letters were significantly different, p< 0.05. The 

number between parentheses is the percentage of change from control value 
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Figure 5: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on liver 
glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S transferase (GST) reduced glutathione 

(GSH), superoxide dismutase (SOD), and catalase of male rats 

Thiobarbituric acid reactive substances 

significantly increased in 50 and 100 mg/kg of 

PEG as compared with the control group. 

Meanwhile, treatment with MOLE significantly 

decreased in co-treatment at dose 50 and 100 

mg/kg of PEG. On the other hand, NOx in animals 

treated with PEG at dose 50 mg/kg caused 

insignificant change and significantly increased in 

other dose of PEG that treated alone, as 

compared with control. Meanwhile, when treated 

with MOLE caused insignificant change with PEG 

at dose 50 mg/kg, while MOLE caused a 

substantial decline with PEG at dose 100 mg/kg 

compared with the group treated with PEG alone 

(Table 5 and Figure 6). 

The results revealed that AST significantly 

increased in all groups administered with PEG 

and/or MOLE, as compared with the control 

group. ALT significantly decreased in PEG (50 

and 100 mg/kg) and significantly increased in 

PEG 50 plus MOLE, γGT significantly increased in 

both doses of PEG treated alone compared with a 

control group and substantially decreased in PEG 

100 mg/kg plus MOLE compared with PEG at 

dose 100 mg/kg alone. AlP and AcP significantly 

increased in both doses of the groups treated 

with PEG alone compared with a control group. 

Treatment with MOLE significantly decreased in 

AlP in PEG at dose of 100 mg/kg, and also AcP 

significantly decreased in PEG at dose of 50 and 

100 mg/kg. 

Table 5: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on liver 

thiobarbituric acid reactive substances (TBARS) and nitric oxide of male rats 

Experimental Groups 
Parameter 

TBARS (µmol/g tissue) Nitric oxide (mU/mg protein) 

Control 1.8±0.02cd 179.1±6.87b 

MOLE 
1.5±0.03d 

(-14.38%) 

170.8±4.81b 

(-4.63%) 

PEG (50 mg/kg) 
2.1±0.03c 

(21.83%) 

170.6±6.93b 

(-4.74%) 

PEG (50 mg/kg) + 

MOLE 

1.8±0.05cd 

(5.11%) 

191.2±6.37b 

(6.75%) 

PEG (100 mg/kg) 
4.3±0.21a 

(144.11%) 

258.3±7.40a 

(44.22%) 

PEG (100 mg/kg) + 

MOLE 

3.1±0.21b 

(77.16%) 

187.0±6.70b 

(4.41%) 

The results are expressed as (Mean ± SE, n=6). 
abc Mean values within a column not sharing common superscript letters were significantly different, p< 0.05. The 

number between parentheses is the percentage of change from control value. 
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Figure 6: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on liver 

thiobarbituric acid reactive substances (TBARS) and nitric oxide of male rats 

The present result showed the insignificant 

changes in both doses of PEG (50 and 100 mg/kg) 

in TP compared with the control group, and also 

in the group treated with MOLE in PEG at dose of 

50 mg/kg but significantly increased in PEG at 

dose of 100 mg/kg compared with the rats 

treated with PEG (50 and 100 mg/kg) alone, 

respectively. The indirect bilirubin insignificantly 

increased in the groups treated with both doses 

of PEG compared with the control group. 

However, MOLE administration substantial 

increase in PEG at dose of 50 mg/kg and 

significantly decreased in PEG at dose of 100 

mg/kg compared with the group treated with 

PEG 50 and 100 mg/kg alone. The direct bilirubin 

significantly increased in both doses of PEG 

treated alone compared with the control group, 

while the administration of MOLE significantly 

decreased (Table 6 and Figure 7). 

 

Table 6: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on plama total 

protein (TP), indirect and direct bilirubin in blood plasma of male rats 

Experimental Groups 
Parameter 

TP (g/dL) Indirect bilirubin (mg/dL) Direct bilirubin (mg/dL) 

Control 3.4±0.08b 0.499±0.026cd 0.371±0.042cd 

MOLE 
3.9±0.15a 

(15.52%) 

0.6±0.09bc 

(34.26%) 

0.5±0.10bc 

(59.02%) 

PEG (50 mg/kg) 
3.5±0.12b 

(3.70%) 

0.4±0.09d 

(-16.83%) 

1.2±0.12a 

(250.1%) 

PEG (50 mg/kg) 

+ 

MOLE 

3.9±0.07a 

(13.67%) 

0.7±0.04bc 

(40.68%) 

0.6±0.06b 

(87.33%) 

PEG (100 mg/kg) 
b3.7±0.03 

(9.86%) 

1.0±0.08a 

(105.6%) 

0.8±0.06b 

(119.9%) 

PEG (100 mg/kg) + 

MOLE 

3.4±0.13b 

(0.17%) 

0.7±0.03b 

(56.11%) 

0.3±0.02d 

(-15.63%) 

The results are expressed as (Mean ± SE, n=6). 
abc Mean values within a column not sharing common superscript letters were significantly different, p< 0.05. The 

number between parentheses is the percentage of change from control value. 
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Figure 7: The effect of polyethylene glycols (PEG) and Moringa oleifera leaves extract (MOLE) on plama total 

protein (TP), indirect and direct bilirubin in blood plasma of male rats

The obtained results showed that the PEG and 

MOLE caused an insignificant effect on body and 

liver weights. 

mTFA is a multi-functional transcription factor 

that is necessary for the maintenance of mtDNA 

integrity, replication, and transcription. The 

mtTFA expression is regulated by PGC-1 α, the 

main organizer of the biosynthesis of 

mitochondria. PGC-1α organizes various 

significant biological functions such as 

antioxidant defenses, cellular respiration, and 

adaptive thermogenesis through activating target 

genes (mtTFA and antioxidant enzymes).  

Meyer et al. [31] reported that exposure to the 

environmental toxins leads to the mitochondrial 

dysfunction due to changes in the permeability of 

the mitochondrial membrane. In addition, this 

was what we have observed in the current results 

when rats were treated with PEG only, a decline 

of mitochondrial biogenic formation, reduce 

transcription, and replication of mtDNA, which 

ultimately causes a weakening of the 

mitochondrial function, this explains the decline 

in the mtTFA expression and PGC-1α in hepatic 

tissue.  

The toxic substances cause the impaired activity 

of the electron transport chain by affecting the 

complex second and fourth of the respiratory 

chain as it leads to the electrons accumulation in 

the chain, and thus leads to transport and 

interaction with oxygen to form superoxide anion 

radical, this causes weakness in the 

mitochondrial activity [32] mentioned that the 

acute toxicity of ethylene glycol causes 

mitochondrial abnormalities and this is what we 

observed in the current results. 

Diab et al. [9] found that DNA damage may be the 

result of free radical-mediated oxidative stress. 

Polyethylene glycol at dose of 100 and 200 mg/kg 

caused an increase in DNA breakages, this 

confirms the current results as it indicated that 

the PEG raise the levels of free radicals and 

decreased the antioxidant enzymes and 

glutathione in the liver. 

Hatami et al. [33] demonstrated that PEG caused 

a decrease in ALT and an increase in AIP, while 

TP, γGT, albumin, and AST did not change. 

The co-administration of PEG with MOLE 

resulted in the significant induction of hepatic 

expression of mtTFA and PGC-1α compared with 

the PEG treated rats at both doses 50 and 100 

mg/kg. These ameliorative effects of MOLE may 

cause significant correction of mitochondrial 

biogenesis and functions. In line with the present 

results, Sosa-Gutiérrez et al. [34] documented 

that the curative of HepG2 cells with Moringa 

oleifera substantial increase in both 

mitochondrial complexes activities and protein 

content. In addition, Mansour et al. [35] approved 

that MOLE has a protective influence contra 

gamma radiation-induced hepatotoxicity through 

its free radical scavenging activity, enhancement 

of the antioxidant defense mechanism, 

amelioration of mitochondrial structure, and 

functions. The result showed that the MOLE 

presence with both doses of PEG reduced the 

levels of inflammatory factors (IL-6 and TNF-α). 

In line with these data, Mahajan et al. [36] 
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mentioned that Moringa oleifera declines the 

level of TNF-α and IL-6. 

Chattopadhyay et al. [37] reported that Moringa 

oleifera protected from DNA breakages and these 

results are consistent with the present results. 

Albrahim and Binobead [38] reported that 

Moringa oleifera increased alone or combined 

with the other compounds as GSH, GST, and GPx. 

These results are in line with the current results.  

Hamed and El-Sayed [39] revealed that total 

protein and AST significantly increased and AIP 

decreased in the group exposed to pendimethalin 

and treated with MOLE. 

Sharma et al. [40] studied the protective role of 

Moringa oleifera. The results showed that hepatic 

cytochrome b5, cytochrome P450 significantly 

decreased compared with the group treated with 

DMBA alone, which was agreed with the present 

results in cytochrom b5 and P450 in the group 

treated with PEG 50 + MOLE, as compared with 

PEG at dose 50 mg/kg. 

Conclusion  

From the present study, it can concluded that 

PEG induced hepatotoxicity in rats at different 

levels, oxidative DNA, and lipid damage, pro-

inflammation impaired gene expression of PGC-

1α and mtTFA and also changed drugs 

metabolizing enzymes. Likewise, the study clearly 

inducted the powerful hepato- protective effects 

of MOLE against PEG-induced toxicity. 
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