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 Increase in drug allergies and unpleasant adverse effects caused by COVID-19 
medication therapies has doubled the need for computing technologies and 
intelligent systems for predicting poor medication outcomes. This study 
aimed to construct machine learning (ML) based prediction models to better 
predict adverse drug effects among COVID-19 hospitalized patients. In this 
retrospective and single-center study, 482 hospitalized COVID-19 patients 
were used for analysis. First, the Chi-square test was employed to determine 
the most critical factors predicting adverse drug effects at P<0.05. Second, the 
four selected decision tree (DT) algorithms were applied to implement the 
model. Finally, the best DT model was acquired for predicting adverse drug 
effects using various performance criteria. This study showed that the 18 
variables gained the Chi-square at P<0.05 as the most important factors 
predicting adverse drug reactions. Besides, comparing the performance of 
selected algorithms demonstrated that generally, the J-48 algorithm with F-
Score=94.6% and AUC=0.957 was the best classifier predicting adverse drug 
reactions among hospitalized COVID-19 patients. Finally, it found that the J-48 
algorithm enables a reasonable level of accuracy in predicting the risk of 
harmful drug effects among COVID-19 hospitalized patients. It potentially 
facilitates identifying high-risk patients and informing proper interventions 
by the clinicians. 
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G R A P H I C A L   A B S T R A C T 

 
Introduction 

Today, Coronavirus 2019 (COVID-19), also 

known as Acute Respiratory Syndrome, is 

commonly dubbed as SARS-COV-2, which, in turn, 

has affected millions of people worldwide. A 

diverse and multidimensional clinical picture 

determines the disease and its incubation period 

is 14 days, and on average, symptoms appear 

within 4-5 days after exposure [1-3]. The disease 

manifestation can be ranged from asymptomatic 

to severe pneumonia, acute respiratory distress 

syndrome (ARDS), and even death [4]. 

Reportedly, approximately 80% of COVID-19-

stricken patients suffer from asymptomatic or 

mild to moderate symptoms, and about 15% of 

patients present with severe symptoms and are 

referred for critical care units [5, 6]. It is reported 

that the patient's condition becomes critical and 

may require hospitalization in intensive care 

units(ICU) in 5% of cases. Despite widespread 

vaccination in the population, the prevalence of 

new emerging disease cases characterized by 

much more contagious species is still ever-

increasing [7]. It is said that aging, male gender, 

obesity (BMI> 40), underlying diseases, and 

hypoxemia are essential factors that considerably 

exacerbate the condition. The severe or acute 

stage of the disease is characterized by severe 

complications such as ARDS, cytokine syndrome, 

and multiple-system organ dysfunction (MOF) [5, 

6]. In the meantime, many hospitalized patients 

with advanced stages need drug therapy to 

prevent patient deterioration and reduce 

respiratory complications [8]. So far, several 

drugs have been proposed to avoid severe 

complications and mortality caused by COVID-19. 

However, unfortunately, no approved drug 

therapy has been discovered to treat COVID-19 

[9]. Many drugs have lacked significant effects 

due to the complex, unknown and mutable nature 

of the disease [10]. On the other hand, physicians 

have reported problems in predicting the COVID-

19 drug adverse effects [11]. This requirement is 

more pronounced, especially concerning the 

increase number of drug adverse reactions and 

current unpredictability of the disease behavior 

and courses [11,12]. Therefore, designing 

predictive models of COVID-19 adverse effects 

possibility can increase drug therapy quality by 

reducing severe drug allergies and interactions.  

To deal with this problem, the design and 

implementation of clinical decision support 

systems (CDSS) based on artificial intelligence 

(AI) will be of great importance, accordingly [13-

16]. Machine learning (ML) algorithms, a subset 

of artificial intelligence, are extensively utilized to 
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screen, diagnose, prognosis, and predict COVID-

19 outcomes [17, 18]. These mathematics models 

could quickly combine and analyze large volumes 

of data. Besides, ML algorithms are applied to 

generate predictive models that can be used to 

support and improve clinical decision-making for 

a wide range of outcomes [19-22]. It should be 

noted that a great deal of ML-based models was 

developed to estimate the COVID-19 severity, 

patient deterioration [17,23], ICU admission [23-

27], and mortality [24,25,28-34] in previous 

studies. Unfortunately, few studies have been 

conducted on applying ML techniques to predict 

adverse drug effects among COVID-19 

hospitalized patients. 

Therefore, the present study was performed to 

establish and compare several ML-based 

predictive models to estimate adverse drug 

reactions among COVID-19 hospitalized patients. 

Material and Methods  

This study aimed to predict the adverse drug 

effect among COVID-19 hospitalized patients and 

was carried out in four stages as follow: 

Table 1: Characteristics related to drug adverse effect prediction 

Inputs 

Factors Variables 

Demographical Age (year), height (cm)1, weight (Kg)2, blood type, and gender 

Laboratory data 

Blood creatinine (mg/dL)[3], red cell count (Cells/L)[4], white cell count 

(Cells/L)[4], hematocrit (L/L)[5], hemoglobin rate (g/dL)[6], platelet count 

(Cells/μL)[7], absolute lymphocyte count (103 Cells/μL)[7], absolute neutrophil 

count (Cells/μL)[7], blood calcium (mg/dL)[3], blood sodium (mEq/L)[8], 

magnesium (mEq/L)[8], blood phosphor (mg/dL), blood potassium (mEq/L), 

blood urea nitrogen (mg/dL)[3], total bilirubin (mg/dL)[3], aspartate 

aminotransferase (units/L)[9], alanine aminotransferase (units/L)[9], serum 

albumin (g/dL)[10], blood glucose (mg/dL)[3], lactate dehydrogenase 

(Units/L)[9], activated partial thromboplastin time (S)[11], prothrombin time 

(S)[11], alkaline phosphatase (Units/L)[9], C-reactive protein (mg/L)[12], 

erythrocyte sedimentation rate (mm/hr)[13], and hypersensitive troponin 

(n/L)[14]. 

Clinical 

manifestations 

Cough, contusion, nausea, vomit, headache, gastrointestinal symptoms, muscular 

pain, chill, fever, temperature, pneumonia, dyspnea, loss of taste, loss of smell, 

rhinorrhea, pleural fluid, consolidation, and sore of the throat. 

Prescription 
Current drug therapy (COVID-19 drug), drug dose, drug history (prior), drug 

allergy 

Epidemiological Smoking, alcohol consumption 

History of 

diseases 
Blood pressure, diabetes, cardiac diseases, and other underline diseases. 

 Hospitalization Length of hospitalization and ICU hospitalization. 

Output 

Class Modes 

drug side / 

harmful effects 
NO: 0 and  Yes: 1 

1- Centimeter, 2- Kilogram 3-Milligram per deciliter, 4-Number of cells per liter, 5-Number red cells per liter per 

number of cells per liter, 6-Grams per decilitre, 7- Number of cells per microlitre, 8- Miliequivalents per liter, 9- 

Units per liter, 10-Grams per decilitre, 11-Seconds, 12- Milligrams per liter, 13-Millimeters per hour, 14- 

Nanograms per liter 

Collectin Data  

In this study, a COVID-19 hospital-based 

Electronic Medical Record (EMR) database from 

Mostafa Khomeini medical center, affiliated with 

Ilam University of medical sciences, West of Iran, 

was investigated retrospectively, February 9, 

2020, to July 20, 2021. During this period, a total 

of 2854 suspected cases with COVID-19 had been 

referred to this center, of whom 853 cases were 

detected as positive COVID-19, and their clinical 
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data were recorded in the EMR database based 

on six categories and 60 features. These features 

were categorized as laboratory (25 variables), 

demographic (five variables), clinical 

manifestations (18 variables), prescription (four 

variables), history of diseases (four variables), 

epidemiologic (two variables), and 

hospitalization (two variables), which are 

depicted in Table 1. The output variable was 

classified into two groups: hospitalized COVID-19 

patients with adverse drug effects (code 1) and 

those who hadn't these conditions (code 0). 

Dataset Preparing and Analyzing 

In this study, first, two experienced health 

information managers (M.SH and R.N) 

investigated all the case records, consulting two 

infectious and internal specialists regarding the 

quantitative and qualitative attributes of medical 

documentation and appropriateness for 

statistical analysis. Therefore, the samples 

owning more than 70% missing values that had 

no substantial role in statistical analysis were 

excluded from the study. In the next step, for the 

cases with less than 70% missing values, we used 

the two methods of the replacement by averaged 

values and K-nearest neighborhood (KNN) with 

specific amounts of K in Rapid Miner V 7.1 

software for embedding the missing quantitative 

and qualitative values, respectively. Finally, to 

obtain the most relevant features as the best 

variables for drug adverse effect prediction and 

reduce the dataset dimensions, we used the 

feature selection process in this respect. Due to 

the enormous amount of data with many 

unrelated attributes in databases, this process is 

essential in data science and data mining 

applications because of its capability to gain 

pertinent features and eliminate useless data 

elements (35-37). Some advantages of this 

process can be enumerated as 1- removing 

irrelevant attributes, 2- clustering dataset using 

more related features, 3- augmenting algorithms 

performance, 4- reducing training time, more 

understandable data mining results, and 5- 

preventing form overfitting (38-40). In this study, 

the independence Chi-square test (χ2) has been 

considered for determining the highly associated 

features with the dependent variable (adverse 

drug effect). The P<0.05 was considered the 

statistically significant level in this regard. 

Decision tree models 

For building the predictive models for drug 

adverse effect prediction among hospitalized 

COVID-19 patients, we have used four selected 

decision tree algorithms because of the high 

usage of these algorithms in recent articles with 

the best performance as follows: 

J-48: This algorithm is also known as C4.5 and is 

considered as the expansion of the ID3 decision 

tree with the capabilities, such as perpending the 

missing values for classifying the samples, 

adjusting the tree size for pruning using the 

confidence factor, extracting the rules, and 

organizing the selections having continuous 

numerical value ranges. This algorithm also 

possesses a pleasant balance between accuracy 

and sample classification capabilities using the 

pruning characteristics in which samples are 

classified completely until the tree is complete. In 

other words, in this algorithm, the overfitting will 

be prevented, and rules are generated using the 

specialized cognizance generated using the 

dataset itself. The J-48 decision tree algorithm 

builds the tree using the entropy concept. 

Suppose that the training dataset includes 

samples (S=S1+S2+S3+…. +Sn) and every instance 

has a p-dimensional vector (X1, I, X2, I, X3, I,..., XP, I), 

so in this regard, XJ demonstrates the feature that 

the Si sample will be prolapsed. This algorithm 

uses elements with higher entropy differences 

than others for tree splitting. So it has samples 

categorizing capability with the high distinction 

that will be existed between the subtrees when 

having the classified samples with the highest 

frequency based on different output classes in 

their leave nodes [41-43].  

Random-Forest: The random forest is a hybrid 

decision tree algorithm including various 

subtrees as classifiers with specified depths and 

nodes. This algorithm has reasonable flexibility 

for making the decision trees utilizing the 

multiple features for splitting the trees randomly. 

The accuracy of the random forest decision tree 

algorithm depends on each subtree's accuracy in 

predicting the classes. Its performance also 

depends on the number of the subtrees' votes 
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that existed between them; in other words, the 

model's performance will be considered the 

performance of the majority of the subtrees. This 

decision tree has common capabilities in 

classifying the samples with high performance, 

embedding the outliers and noisy values in 

features, and preventing the overfitting of the 

algorithm [44-47].  

Decision stump: The decision stump owns only 

one layer, including the root node directly 

connected with the leaves node, in contrast with 

other decision tree algorithms having three-node 

layers (root, internal, and leave), and also the 

splitting process will be stopped after the first 

split in this structure. The most common 

application of this classifier is related to mining in 

large dimension datasets. Still, they also can be 

utilized in smaller dimensions of the dataset with 

binary splitting. It is also known as single-rule 

because it predicts the output class with just the 

values in one variable as a predictor [48-50].  

Hoeffding tree: This tree is an additive decision 

algorithm common for an extensive dataset. This 

algorithm is a primitive decision tree algorithm 

with inflexibility in data set dimension variations 

in massive datasets. This algorithm possesses a 

potential advantage for selecting the highly 

differentiating attribute with finite Hoeffding. The 

Hoeffding decision tree algorithm is based on the 

Hoeffding limitation; in other words, by 

considering enough attributes occurrence, the 

range of random variable changeability is the 

predictable amount known as the Hoeffding 

limitation. In this decision tree algorithm, the 

samples categorization process can be done using 

a specified number with a predetermined fitness 

[51-53].  

Analyzing decision tree algorithm's performance 

After developing selected decision tree 

algorithms using the most common technical 

parameters for recognizing the best algorithm to 

predict adverse drug reactions among 

hospitalized COVID-19 patients, the performance 

of these algorithms has been compared and 

evaluated. First, the confusion matrix (Table 2) 

was utilized to compare the algorithm's 

performance and sample classification strength. 

True Positive (TP) and True Negative (TN) 

representing hospitalized COVID-19 patients 

with the drug side effects (P) and didn't have (N) 

and were correctly classified by algorithms, 

respectively. False Positive (FN) and False 

Negative (FN) are the positive and negative cases 

incorrectly classified by algorithms, respectively. 

Also, based on the confusion matrix, the TP-Rate, 

FP-Rate, Precision, Recall, F-Measure, and Area 

under the Receiver Operator Characteristics 

(ROC) of each selected decision tree algorithm 

have been calculated for measuring and 

evaluating the decision tree algorithm's 

performance. Also, the ten-fold cross-validation 

has been considered for embedding errors when 

measuring the algorithms' performance. Finally, 

the best decision tree algorithm has been 

obtained using these different evaluation criteria 

for predicting adverse drug effects and also was 

drawn. Afterward, the most important rules with 

the structure of IF-THEN have been extracted 

from the tree and then interpreted as the 

essential clinical knowledge for predicting 

adverse drug effects among hospitalized COVID-

19 patients with the most frequency of classified 

samples. 

Result and Dissection  

After excluding the samples that owned 70% or 

higher missing, noisy, and abnormal values in 

their attributes and applying the exclusion 

criteria such as records belonged to patients less 

than 18 years old, discharged, or died in 

emergency departments, 371 records were 

excluded from the study finally. Therefore, 482 

records have remained for statistical analysis. 

Among them, 176 (36.5%) records have belonged 

to hospitalized COVID-19 patients with drug side 

effects, and 306 (63.5%) of them were associated 

with patients who hadn't them. The 227 (47.1%) 

records have belonged to men with the mean age 

of 50 ± 12.5 years, and 255 (52.9%) of them were 

associated with women with the mean age 

52±11.7 years. In Table 2, the results of using the 

independence Chi-square test (χ2) for 

determining the most important factors 

predicting the drug side/ adverse effect among 

hospitalized COVID-19 patients at P< 0.05 have 

been represented. 
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Table 2: The most critical factor predicting drug side/ adverse effect at P<0.05 

NO Variable Type 
Frequency or 

Mean ±SD 
χ2 P(Level) 

1 Length of hospitalization Numeric 5.03±2.188 89.758 <0.01 

2 Cough Binominal 
Yes (353) 

No (129) 
13.538 <0.01 

3 Nausea Binominal 
Yes (145) 

No (337) 
9.505 <0.01 

4 Vomiting Binominal 
Yes (130) 

No (352) 
4.074 <0.05 

5 Contusion Binominal 
Yes (180) 

No (302) 
10.130 <0.01 

6 Oxygen therapy Binominal 
Yes (437) 

No (45) 
45.817 <0.01 

7 Dyspnea Binominal 
Yes (442) 

No (40) 
6.813 <0.01 

8 Loss of taste Binominal 
Yes (124) 

No (358) 
28.627 <0.01 

9 Loss of smell Binominal 
Yes (137) 

No (345) 
29.681 <0.01 

10 rhinorrhea Binominal 
Yes (280) 

No (202) 
16.586 <0.01 

11 Blood pressure Binominal 
Yes (189) 

No (293) 
10.835 <0.01 

12 Blood sodium Numeric 138.271 ±3.44 44.461 <0.01 

13 Blood potassium Numeric 5.491± 8 13.407 <0.05 

14 
Activated partial thromboplastin 

time 
Numeric 35.453±9.25 118.196 <0.01 

15 Absolute lymphocytic count Numeric 21.702 ±12.01 10.684 <0.01 

16 White blood cell count Numeric 9684 ±124.17 53.134 <0.01 

17 Cardiac disease Nominal 
Yes (157) 

No (325) 
3.514 <0.05 

18 Pneumonia Nominal 
Yes (413) 

No (69) 
17.775 <0.01 

Based on the information represented in Table 3, 

the 18 variables obtained the specific Chi-square 

at P<0.05 as the final predictors. Also, the 15 

variables had the χ2 at P<0.01 in this respect. We 

obtained the hospitalization length (χ2=89.758) 

(P<0.01), white blood cell count (χ2=53.154) 

(P<0.01), and activated partial thromboplastin 

time (118.196) (P<0.01) as the best factors at 

P<0.01. They were considered the best factors 

were predicting adverse drug effects among 

hospitalized COVID-19 patients. The results of 

classifying the samples for selected decision tree 

algorithms using the confusion matrix are 

presented in Table 3. 

Based on the information given in Table 4, the 

Decision stump with TN=306 and FP=0 by 

classifying all the negative samples (non-affected 

cases) obtained better performance than other 

decision tree algorithms. Also, the Random Forest 

and J-48 decision tree algorithms with TN=300 

and FP=6 have gotten a pleasant performance 

with a meager difference rather than the Decision 

stump classifier. On the contrary, the J-48 

decision tree algorithm with TP=156 and FN=20 

could best classify the positive cases (having drug 

adverse effects) and performed considerably 

better than other algorithms. The results of 

comparing the decision tree algorithms 

performance using different evaluation criteria 

are demonstrated in Figure 1 
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Table 3: Results of classifying samples using the confusion matrix 

NO 

Decision 

tree 

algorithms 

Technical attributes TP FN FP TN 

1 
Hoeffding 

Tree 

Grace period=200 

Leaf prediction strategy= Naïve Bayes 

adaptive 

Hoeffding Tie threshold=0.05 

Split confidence=1.0E-7 

Split criterion=Info gain 

80 96 25 281 

2 
Decision 

stump 

Number of batch Size=100 

Number of decimal places=2 

Minimum number of instances =1 

64 112 0 306 

3 J-48 

Confidence factor=0.2 

Number of folds=3 

Number of seeds=1 

Binary splits=false 

156 20 6 300 

4 
Random 

Forest 

Maximum depth=3 

Number of randomly attributes chosen=3 

Number of iterations= 100 

Break Tie randomly=false 

90 86 6 300 

 
Figure 1: Different indicators of algorithms performance evaluation 

 

The results of comparing the decision tree 

algorithms performance using Figure 1 

demonstrated that the J-48 decision tree 

algorithm with TP-Rate=94.6%, FP-Rate=7.9%, 

Precision=94.7%, Precision=94.7%, 

Recall=94.6%, and F-Measure=94.6% acquired 

the best performance generally. Also, the 

Hoeffding decision tree algorithm with TP-Rate= 

74.9%, Precision=75.1%, Recall=74.9%, and F-

Measure=73% had the worst performance. In 

Figure 2, the ROC of all selected decision tree 

algorithms is depicted (the vertical and 

horizontal vertices demonstrate the TPR and FPR 

vertices, respectively). 
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Figure 2: The ROC of all selected decision tree algorithms 

Comparing selected decision tree algorithms 

performance using the ROC diagram 

demonstrated that the J-48 algorithm with TP-

Rate=94.6%, FP-Rate=7.9%, Precision=94.7%, 

Precision=94.7%, Recall=94.6%, F-

Measure=94.6%, and AUC=0.957 had the best 

capability than others and was considered as the 

best decision model for predicting the adverse 

drug effect among hospitalized COVID-19 

patients. In conclusion, the J-48 decision tree 

algorithm has been drawn, and the essential 

clinical knowledge with the IF-THEN structure 

was extracted and interpreted with more detail. 

We pruned the tree using the confidence factor to 

reduce the tree's size for better understanding 

and extracting the clinical knowledge from the 

decision tree. We decreased it to 0.1 (Figure 3). 

The most important technical features for 

building the decision tree were batch size=100, 

binary splits=false, collapse tree=true, confidence 

factor=0.1, the minimum number of instances per 

leave=2, number of folds=3, number of seeds=1, 

use Laplace=false. 

 

Some of the most important clinical rules with 

the most classified samples have been brought in 

as follow: 

1. IF (Activated partial thromboplastin time 

<=31) THEN (drug side/ adverse effect =1), 

2. IF (Activated partial thromboplastin time >31) 

(Length of hospitalization <=6) (Loss of taste 

=No) THEN (drug side/ adverse effect =0), 

3. IF (Activated partial thromboplastin time >31) 

(Length of hospitalization >6) (White cell count > 

8700) THEN (drug side/ adverse effect =1). 

In the J-48 decision tree algorithm, activated 

partial thromboplastin time was considered the 

best variable for predicting drug side/ adverse 

effects with the highest info gain. Therefore, it 

was placed at the root node. Rule1 states that in 

hospitalized COVID-19 patients having activated 

partial thromboplastin time less than 31 seconds, 

the hospitalized COVID-19 presumably had the 

adverse drug effects, and 64 samples of the study 

have confirmed this pattern. In Rule 2, 

hospitalized COVID-19 patients with more than 

31 Activated partial thromboplastin time seconds 

hospitalized less than six days and didn't lose 

their taste sensation, hadn't drug adverse effects 

with the probability of 87%. According to Rule 3, 

the negative drug effect existed among the 39 

hospitalized COVID-19 patients. They have more 

than 31 activated partial time seconds and more 

than six days of hospitalization, and more than 

8700 counts of white cells.  

Given the wide range of clinical manifestations of 

COVID-19, it is crucial to develop intelligent 

models for predicting the likelihood of adverse 

drug effects using ML techniques [54]. Therefore, 

we examined four selected decision tree ML-

based models on important parameters obtained 

from the independence test of Chi-square. The 

decision tree models used here included the J-48, 

Random forest, Hoeffding tree, and Decision 

stump, applied upon 482 confirmed RT-PCR 



 Shanbehzadeh M., et al. / J. Med. Chem. Sci. 2022, 5(4) 505-517 

513 | P a g e  

 

COVID-19 patients. Finally, our results showed 

that the J-48 classifier performed better than the 

other selected ML algorithms with an F-score of = 

94.6% and AUC = 0.957. Necessarily, treating 

patients with COVID-19 requires informed and 

scientific drug prescription, especially when 

hospitals are faced with an increasing number of 

patients and a shortage of care facilities [55, 56]. 

In this regard, physicians state that they 

encounter problems in predicting the likelihood 

of adverse drug effects [57]. 

 
Figure 3: The pruned J-48 decision tree algorithm

To deal with this problem thus, the design and 

implementation of CDSS based on AI will be 

precious for the optimal drug prescription and 

support for clinical decisions [17, 58]. For 

instance, ML-equipped CDSSs could assist 

clinicians in making clinical decisions by alerting 

caregivers and recommending interventions 

based on objective and generalizable empirical 

data [59]. This study showed that ML algorithms, 

especially the J-48 classifier, may predict the drug 

side and adverse effects in patients hospitalized 

with COVID-19.    

To date, some studies have evaluated the 

application of ML techniques in predicting the 

poor and adverse outcomes of drug prescription 

among COVID-19. For example, Ganguli et al. 

(2021) developed an intelligent system based on 

ML algorithms to predict medication error in 

hospitalized patients with COVID-19 using 1023 

patient data. They reported the best performance 

for the J-48 algorithm with AUC = 0.84 [60]. 

Besides, Behery (2021) analyzed the data of 5643 

negative and positive samples of COVID-19 to 

predict drug allergy in individuals using selected 

ML models. The results showed that the J-48 

algorithm represented an acceptable detection 

power with 86% accuracy [61]. Accordingly, Lv et 

al. (2021) evaluated the performance of four ML 

algorithms to predict the adverse drug effects 

using information gathered from 3841 COVID-19 

cases. Finally, the J-48 model with AUC = 0.92 

was introduced as the most suitable algorithm 

[62]. Siqueira et al. (2021) evaluated four ML 

algorithms to predict the likelihood of patient 
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deterioration of patients with COVID-19 after 

drug therapy. Ultimately, the J-48 model with the 

best AUC of 0.92 was introduced as the superior 

algorithm [8]. In the present study, the results 

showed that the J-48 decision tree algorithm with 

F-Score = 64.6% and AUC = 0.957 enjoys the best 

capacity for early prediction of drug side and 

adverse effects in hospitalized patients with 

COVID-19.  The high predictive indices reported 

by our J-48 model showed that this algorithm can 

differentiate between high-risk and low-risk 

patients. 

The main advantage of the present study is that 

we predicted the possibility of prescription side 

effects based on the most appropriate variables 

derived from the independence test of Chi-

square. Nevertheless, the present study also had 

some limitations. First, we analyzed a 

retrospective and single-center data set with a 

limited sample size. Second, continuous changes 

in some crucial variables should be thoroughly 

observed to accurately identify patients at higher 

risk of poor outcomes on time. Finally, the 

selected data set lacked clinically essential 

variables such as radiological indicators. In the 

future, if one intends to develop more ML 

techniques in a more significant, multicenter, and 

futuristic data set equipped with more 

quantitative and reliable data, the accuracy of the 

model performance and its generalizability will 

increase accordingly. 

Conclusions 

In this research study, the data recorded in the 

selected hospital database were analyzed. Then, 

ML models were developed and tested to predict 

the possible drug side and adverse effects 

considering 18 clinical features. The results 

revealed the acceptable performance of the J-48 

decision tree model. Therefore, the developed 

predictive models can be demanding in providing 

quality of care, diminishing the workload of the 

care team, minimizing prescription errors, 

increasing the quality of care, and rendering 

patient-centered treatments. 
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