Considering different kinds of gasoline unit catalysts

Document Type: Review Article

Authors

1 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

The aim of this study is to investigate naphtha Gasoline unit catalysts. In two-factor catalysts, platinum or palladium was used as the active metal on the base alumina chloride, zirconia, and zeolite. Considering the fact that refining and gasoline processes are expanding and refineries in Iran are required to produce cleaner fuels that meet environmental standards, investigating different kinds of light naphtha gasoline unit catalysts can greatly help to promote production of clean fuel and make production process more efficient. Light naphtha gasoline is normally conversion of normal pentane and normal hexane compounds to its branched compounds. Also Light naphtha its derivatives and it is done by chlorinated ammonia or zeolite catalysts in one or some fixed bed reactors.  Activity of two-factor catalysts strongly depends on acidic and metal sites. For example, in catalyst Pt./HY, which is a kind of zeolite catalyst for Gasoline Units, the optimal ratio of strong acidic sites to metal sites in n-heptane Gasoline is determined to be less than 6. In this work, various kinds of catalysts used in isomerization unit were identified and considered.

Graphical Abstract

Considering different kinds of gasoline unit catalysts

Keywords

Main Subjects


[1]. Changhua S., Hui Liu., Yuan L., Shuai G., Hongwei W., Wenshuai Z., Yonghui C., Changri H., Huaming L. Chinese J. Chem., 2014, 32:434

[2]. Weifeng H., Hongye SU., Yongyou HU., Jian C., Chinese J. Chem. Eng., 2006, 14:584

[3]. Jinhwa C., Suchol L., Jongju Ha., Soonho S., Kwangmin C. Chinese J. Chem., 2010, 28:1085

[4]. Weifeng H., Hongye S., Shengjing M., Jian C., Chinese J. Chem. Eng, 2007, 15:75  

[5]. Qiang G., Linyi B., Xiaojing Z., Peng W., Peizhou Li., Yongfei Z., Ruqiang Z., Yanli Zh. Chinese J. Chem., 2014, 33:90

[6]. Samimi A., Zarinabadi S., Shahbazi A., Azimi A., Mirzaei M., Iran. Chem. Commun., 2019, 7: 681

[7]. Majid S., Navid M., Rahmat S. International J. Appl. Eng. Res., 2011, 2:110

[8]. Taoufiq G., Dua V., Comput. Chem. Eng., 2011, 35:1838

[9]. Gyngazova M., Kravtsor A., Ivanchina E., Korolenko M., Uvarkina D. Catalysis in Industry, 2010, 2:620

[10]. Arani H.M., Shirvani M., Safdarian K., Dorostkar E. J. Chem. Eng., 2009, 26:723

[11]. Varga T., Szeifert F., Abonyi J. Eng. Appl. Artif. Intell, 2009, 22: 569

[12]. Quinn G.P., Keough M.J. Experimental Design and Data Analysis for Biologists, Cambridge University Press, Cambridge, UK, 2002, pp. 111-117

[13]. Floudas CA., X Lin. Comput. Chem. Eng., 2004, 28: 2109

[14]. Wu D., Ierapetritou M. Chem. Eng. Process., 2007, 46:1129

[15]. Davood I., Mohsen K., Shahram A., Mitra J., Razieh R., Mohamad Reza R. Chem. Eng. Res. Des., 2014, 92:1704

[16]. Sa'idi M., Mostoufi N., Sotudeh-Gharebagh R. Int. J. Appl. Eng. Res., 2011, 2:115.

[17]. Smania P., Pinto J.M. Comput. Aided Chem. Eng., 2003, 15:1038

[18]. Palmer R., Kao S., Tong C., Shipman D. Hydrocarbon processing, 2008, 87:55

[19]. Engell S., Harjunkoski I. Comput. Chem. Eng., 2012, 47:121

[20]. Raseev S. Catalytic Reforming in Thermal and Catalytic Process in Petroleum Reforming, Science and Technology, Marcel Dekker Inc., New York, U.S.A, 2003, pp. 193-196

[21]. Sohn S., Kim J. Expert Syst. Appl., 2012, 39:4007

[22]. Tabatabaee M., Hedayati A., Samimi A., Science Road Journal, 2015, 03, 6

[23]. Gueddar T., Dua V., Comput. Chem. Eng., 2011, 35, 1838

[24]. Gao X., Shang C., Jiang  Y., Chen  T., Huang D., AIChE J., 2018, 60:2525

[25]. Jia Z., Ierapetritou M., Kelly J. D., Indust. Eng. Chem. Res., 2003, 42:3085

[26]. Jia Z., Ierapetritou M. Comput. Chem. Eng., 2004, 28:1001

[27]. Gyngazova M., Chekantsev N., Korolenko M., Ivanchina E., Kravtsov A. Catalysis in Industry, 2012, 4 :284

[28]. Iranshah D., Karimi M., Amiri SH., Jafari M., Rafiei R., Rahimpour M.R. Chem. Eng. Res. Des., 2014, 92:1704

[29]. Stijepovic M., Ostojic A., Milenkovic I., Linke P., Energ. Fuel, 2009, 23:979

[30]. Arani H., Shirvani M., Safdarian K., Dorostkar E. J., Chem. Eng., 2009, 26: 723

[31]. Palmer, R., Kao, S., Tong, C., Shipman, D., Consider options to lower benzene levels in Gasoline, Hydrocarbon processing, Houston, Texas, U.S.A, 2008, p. 55-66

[32]. Gembiki S. A Biographical Memoir of Veladimir Haensel, 3rd ed., the National Academy of Sciences, WashingtonDC, 2006

[33]. Moghadasi, Z., J. Med. Chem. Sci., 2019, 2:35

[34]. Mohammadi R., Sajjadi A., J. Med. Chem. Sci., 2019, 2:41

[35]. Sajjadi A., Moosavi S.M. J. Med. Chem. Sci., 2018, 1:1