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 Lung diseases significantly impact the world regarding health, economic 
cost, and social and psychological well-being. X-ray images are a primary 
method for diagnosing lung diseases, but the manual analysis of these 
images can be time-consuming, subjective, and prone to inaccuracies. 
However, it is essential to diagnose lung diseases in a timely manner and 
with high accuracy to ensure effective treatment and management. This 
study introduces an innovative deep-learning version termed the "ESSDN-
LN model" to overcome these challenges. It is a variant of the single shot 
detector (SSD) network. This model aims to rapidly and accurately detect 
and classify six types of lung disease: aortic enlargement, cardiomegaly, 
pleural thickening, pulmonary fibrosis, COVID-19, and pneumonia. The 
ESSDN-LD model was introduced in three versions: ESSDN-LDV1, ESSDN-
LDV2, and ESSDN-LDV3. ESSDN-LDV1 incorporates the SSD with batch 
normalization, dropout regularization, and data augmentation techniques. 
ESSDN-LDV2 builds upon the advancements of ESSDN-LDV1 by 
incorporating the random search algorithm for adjusting model hyper-
parameters and introducing the skip connections technique to enhance the 
detection performance. Furthermore, ESSDN-LDV3 further enhances the 
capabilities of ESSDN-LDV1 using the genetic algorithm for hyper-
parameter tuning and incorporating feature fusion and skip connections 
techniques, thereby significantly improving the detection performance. 
The ESSDN-LDV3 model demonstrated exceptional performance compared 
to other versions, achieving a remarkable accuracy of 96.5% and a 
prediction time of 0.018 seconds in the seven-class classification. 
Furthermore, it achieved a total accuracy of 98.4% and a prediction time of 
0.013 seconds in the three-class classification, encompassing Covid-19, 
pneumonia, and no-finding cases. These impressive results highlight the 
effectiveness and efficiency of the proposed method in accurately 
classifying lung diseases and can contribute to improved patient outcomes 
and treatment decisions. 
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G R A P H I C A L A B S T R A C T 

 

Introduction 

Lung diseases pose significant challenges to 

global health, impacting economic costs and 

social well-being. Annually, these debilitating 

conditions claim a million lives [1]. The early and 

accurate identification of lung diseases is crucial 

in improving patient outcomes and guiding 

effective treatment decisions. X-ray image 

analysis stands as the primary method for 

diagnosing lung diseases. However, manual 

assessments by highly skilled radiologists can be 

time-consuming and prone to errors [2]. Hence, 

there is an urgent need for efficient and precise 

diagnostic methods to address these challenges. 

One promising avenue extensively studied is the 

application of computerized models for rapid and 

accurate detection and classification of lung 

diseases, including aortic enlargement, 

cardiomegaly, pleural thickening, pulmonary 

fibrosis, COVID-19, and pneumonia. In recent 

years, there has been a notable increase in 

research focusing on deep learning methods in 

medical image analysis applications, particularly 

in detecting and classifying lung diseases. Deep 

learning techniques have proven highly effective 

in automatically detecting and classifying lung 

diseases from medical images, offering great 

potential for improved diagnosis and treatment 

[3]. Among the various deep learning 

architectures, the SSD network has demonstrated 

promising results in lung disease detection and 

diagnosis [4]. Notably, the SSD network boasts a 

fast inference speed, making it suitable for real-

time and semi-real-time applications [5]. 

Research Objectives 

The main aim of this research is to develop an 

automated application of computerized models 

for rapid and accurate detection and 

classification of lung diseases, including aortic 

enlargement, cardiomegaly, pleural thickening, 

pulmonary fibrosis, COVID-19, and pneumonia. 

Thus, the key objectives are: 

1. Enhance the SSD architecture for lung disease 

detection and diagnosis. 

2. Develop an innovative deep-learning model 

to address manual X-ray image analysis's 

challenges in diagnosing and detecting lung 

diseases. 

3. Detect, diagnose, and localize six lung 

diseases rapidly and accurately. 

4. Design a cost-effective version that requires 

minimal human intervention. 

5. Create a scalable model suitable for large-

scale screening programs and public health 

initiatives. 

6. Reduce the strain on healthcare 

infrastructure and the risk of misdiagnosis. 

The contribution of this research is a 

breakthrough deep learning model, the 

Enhanced Single Shot Multi-Box Detector 

Network for Lung Disease Detection and 

Diagnosis (ESSDN-LD). The ESSDN-LD is 

introduced in three versions: ESSDN-LDV1, 

ESSDN-LDV2, and ESSDN-LDV3. 
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The ESSDN-LDV1 comprises the SSD architecture 

with essential enhancements, including batch 

normalization, dropout regularization, and data 

augmentation. The ESSDN-LDV2 builds upon the 

advancements of ESSDN-LDV1, but it cooperates 

with the skip connections between lower-level 

and higher-level feature maps. These connections 

facilitate the seamless propagation of information 

across multiple scales, enabling the model to 

capture local and global features. Likewise, it 

introduced the random search algorithm to fine-

tune the model's hyper-parameters. The ESSDN-

LDV3 builds upon the advancement of ESSDN-

LDV1, but it cooperates with feature fusion and 

skips connections between the SSD layers, which 

combine feature maps from various network 

layers. This fusion allows the model to harness 

low-level and high-level features simultaneously 

to enhance the detection of lung diseases. Also, it 

cooperates with the genetic algorithm to fine-

tune the model's hyper-parameters. 

The ESSDN-LD model contributes significantly to 

the global fight against lung diseases by providing 

a reliable and swift diagnostic model, laying the 

foundation for improved patient care and timely 

interventions. 

Lung diseases 

The lung is vulnerable to various illnesses, 

including chronic obstructive pulmonary disease 

(COPD), asthma, lung cancer, pulmonary fibrosis, 

pulmonary hypertension, tuberculosis (TB), 

pneumonia, sarcoidosis, and cystic fibrosis. These 

diseases manifest with symptoms like shortness 

of breath, coughing, chest discomfort, wheezing, 

and fatigue [6]. The impact of these diseases on 

an individual's health, well-being, and quality of 

life is substantial. Therefore, timely and accurate 

diagnoses are crucial in improving patient 

outcomes and guiding effective treatment 

decisions [7, 8]. Identifying these diseases 

involves various diagnostic methods, including 

physical examination, laboratory tests, 

bronchoscopy, biopsy, allergy testing, and 

imaging tests [8]. Among these methods, imaging 

tests such as X-rays, CT scans, and MRI scans are 

commonly utilized to gather detailed information 

about lung conditions. These imaging techniques 

aid in identifying abnormalities such as tumors, 

infections, fluid accumulation, or structural 

irregularities. 

Literature review 

In recent years, numerous studies have 

demonstrated the effectiveness of deep learning 

methods in the lung disease detection and 

classification.  Xie et al. [9] proposed a deep 

learning-based version using CNNs based on 

Faster R-CNN for pulmonary nodule detection in 

CT images. The proposed model achieved a 

sensitivity of 86.42% and demonstrated the 

potential of deep learning methods for lung 

disease detection. Hu et al. [10] presented a 

multi-kernel depth-wise convolution learning-

based version for various types of lung disease 

classification. Their method achieved high 

accuracy, including a performance of 98.3% for 

classifying X-ray images into pneumonia or 

normal, highlighting the power of deep learning 

methods for lung disease classification. 

Sheykhivand et al. [11] introduced a deep 

learning model utilizing Generative Adversarial 

Networks, transfer learning, and LSTM networks 

to classify the viral, bacterial, and COVID-19 

diseases in X-ray images. The proposed model 

achieved an accuracy of 90% in six functional 

scenarios classification and 99% in diagnosing 

COVID-19. Souid et al. [12] employed a CNN-

based deep learning model that modified the 

MobileNet V2 with transfer learning and 

metadata leveraging to recognize 14 lung 

diseases. Their proposed model achieved an AUC 

score of 0.811 and an accuracy of around 90%, 

illustrating the potential of deep learning 

methods for lung disease detection and 

classification. 

Arifin et al. [13] developed a deep-learning model 

designed for deployment in a mobile application. 

Utilizing MobileNet's Single Shot Detection, their 

lightweight model achieved a high classification 

performance of 93.24% for COVID-19, viral 

pneumonia, and normal cases, underscoring the 

effectiveness of SSD networks in lung disease 

classification. Lin et al. [14] deployed a deep 

learning-based version with the RRNet model, 

integrating the advantages of RepVGG and 
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Resblock to diagnose 14 lung diseases. Their 

proposed network achieved high detection 

accuracy and inference speed, demonstrating the 

potential of Single-Shot Refinement Neural 

Networks in achieving both performance and 

efficiency in computer-aided diagnosis systems. 

Goyal et al. [15] introduced a novel framework 

utilizing recurrent neural networks and long 

short-term memory for lung disease diagnosis. 

Their model achieved an accuracy of 95%, 

demonstrating the potency of deep learning 

methods in lung disease diagnosis. 

These studies collectively showcase the 

significant advancements and potential of deep 

learning methods in lung disease detection, 

classification, and diagnosis, offering valuable 

insights for future research in medical imaging 

techniques. 

Martials and Methods  

The SSDN-LD (Single-Shot Detection Network for 

Lung Diseases) is a deep learning model designed 

to accurately and rapidly detect, diagnose, and 

localize six types of lung diseases. The 

methodology employed by the SSDN-LD involves 

several operations: 

Dataset Acquisition: Obtained a large dataset of 

chest X-ray images with annotations indicating 

the presence or absence of the six lung diseases 

(aortic enlargement, cardiomegaly, pleural 

thickening, pulmonary fibrosis, COVID-19, and 

pneumonia). 

Pre-processing: The acquired images undergo 

pre-processing to ensure that they have a 

consistent size and quality.  

Model Training: The SSDN-LD model is trained 

using different architectures of SSD and various 

hyper-parameter settings.  

Model Validation: The trained SSDN-LD model is 

validated using a separate dataset to assess its 

performance and generalization ability. This step 

ensures the model can detect and classify lung 

diseases in new and unseen X-ray images. 

Deployment: Once the model is trained and 

validated, it can be deployed in a healthcare 

setting to assist medical professionals in the lung 

diseases detection of chest X-ray images, 

providing them with valuable support in making 

accurate diagnoses. 

The proposed SSDN-LD was introduced in three 

versions: ESSDN-LDV1, ESSDN-LDV2, and ESSDN-

LDV3. These versions utilize different 

components and hyper-parameter tuning 

methods within the SSD architecture to enhance 

the performance of lung disease detection and 

classification in X-ray images. 

This section describes the SSD architecture used 

in the SSDN-LD model, the hyper-parameters of 

SSDN-LD, and the specific architectures of SSDN-

LD1, SSDN-LD2, and SSDN-LD3. In addition, it 

provides a detailed description of the datasets 

used, the applied pre-processing techniques, and 

the performance metrics employed to evaluate 

the model's effectiveness. 

Single shot multibox detector 

The SSD uses a single deep neural network to 

detect and classify objects in images, making it 

faster and more efficient than many other object 

detection algorithms [5]. In addition, it works by 

dividing the input image into a grid of fixed-size 

boxes at different scales and aspect ratios. Each of 

these boxes is called an anchor box, and the 

network predicts the probability of each anchor 

box containing an object and the offset of the 

proposal box from the anchor box. As a result, the 

network can detect objects of different sizes and 

aspect ratios in the input image [5]. The proposed 

SSD architecture includes three main layers: 

Base Feature Extraction Layers (BFELs): These 

layers consist of convolutional and pooling 

operations with ResNet architecture. BFELs were 

responsible for capturing low-level features, such 

as edges, corners, and textures, from the input 

images. BFELs were proposed using ResNet CNN 

architecture. 

Intermediate Feature Layers (IFLs): These layers’ 

capture higher-level features with increasing 

receptive fields, enabling the model to capture 

more context and semantic information. 

Prediction Layers (PLs): These layers consist of 

convolutional layers that produce feature maps 

specific to different scales. The SSD is trained 

using a multi-task loss function that combines 

classification and localization loss. The 
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classification loss measures the difference 

between the predicted object class probabilities 

and the ground truth labels, and the localization 

loss measures the difference between the 

predicted box offsets and the ground truth box 

offsets [5]. 

Figure 1 displays the SSD network architecture. 

One of the advantages of the proposed SSD is its 

speed and efficiency. It can process images in 

real-time, and semi-real-time is well-suited for 

applications that require fast and accurate object 

detection. 

SSD’s hyper-parameters 

Hyper-parameters are arguments responsible for 

tuning the algorithms to learn and adjust the 

neural network performance. This study 

proposed several hyper-parameters to be tuned 

in SSD: Learning rate (K), Batch size (B), Training 

epoch (E), Padding (P), Optimizer (O), 

Momentum (M), and Decay (D). 

K is an argument used to judge the speed at 

which the neural network model learns the 

values of a parameter. B is an argument defined 

as the number of samples before learning or 

updating the model parameters. Furthermore, the 

number of epochs is an argument-defined time 

that the learning model will do over the entire 

training dataset. 

P is an argument responsible for keeping the 

spatial sizes fixed after the convolution operation 

by adding columns and rows of zero values. P has 

two types valid (without padding) and the same 

(with zero padding) [16, 17].  

Moreover, D is a hyper-parameter that adjusts 

the moving averages. M speeds up the 

convergence of the optimization methods with 

the gradient technique. O is a technique that 

updates the model weights to minimize the loss 

function. O has three main types stochastic 

gradient descent (SGD), the Adam, and the Root 

Mean Square Propagation (RMSProp) [17]. 

The SGD is an iterative method that optimizes the 

objective function with suitable features. The SGD 

starts from a random point 𝐯 = (𝑣₁, …, 𝑣ᵣ) (where 

the 𝑣₁, 𝑣ᵣ refers to the point features) and travels 

down until reaching the best point of the desired 

function. 

RMSProp is a strategy that accelerates gradient 

descent. The RMSProp calculates the loss 

function gradient for the model parameters and 

updates the parameter values in the gradient 

obverse direction. Furthermore, it settles the 

learning process and prevents optimization 

oscillation [17, 18].  

Adam is a technique that combines momentum 

and RMSProp by storing both individual learning 

rates. The Adam finds a moving average of both 

the gradient and the squared gradient. Also, it 

uses beta1 and beta2 to adjust the decay values of 

the moving average. The beta1 is the first-

moment estimate’s decay rate, and the beta2 is 

the second-moment estimate’s decay rate [19]. 

ESSDN-LDV1 

This model incorporates batch normalization to 

normalize the input of each layer by subtracting 

the batch mean and dividing by the batch 

standard deviation, dropout regularization to 

prevent over-fitting and improve generalization, 

and data augmentation includes shifting, 

zooming, and rotation which introduces 

variations and increases the diversity of training 

samples. ESSDN-LDV1 used fixed hyper-

parameters O: Adam, B: 16, P: valid, M: 0.9, E: 60, 

D: 0.001, and K: 0.001, and also K was reduced by 

a factor of 10 after 40 and 50 epochs.  

ESSDN-LDV2 

This model incorporates skip connections (SCs) 

into the SSD architecture to enhance detection 

and classification accuracy. SCs are established by 

connecting the output of BFELs to the 

corresponding PLs. That means the feature maps 

from early layers are directly combined with the 

feature maps from later layers.  

SCs enhance the model's ability to make accurate 

predictions by utilizing local and global cues. The 

low-level features provide detailed information 

about specific regions or objects in the image, 

while the high-level features provide a broader 

understanding of the overall context. Combining 

these features gives more comprehensive details 

about the input image leading to improved 

detection and classification performance. 
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Figure 1: Single Shot Multibox Detector architecture [5] 

Table 1: The proposed deployed RSA 

The proposed RSA to find the optimal hyper-parameter settings for the ESSDN-LDV2 model 

Input: 

R: Learning rate. 

B: Batch size. 

E: Training epoch. 

P: Padding. 

O: Optimizer. 

M: Momentum. 

D: Decay. 

Procedure: 

1. Define the hyper-parameter space: Define a range or set of values for each hyper-parameter to be 

optimized: Learning rate (R): [0.001, 0.01, 0.1, 1], Batch size (B): [16, 32, 64, 128], Training epoch 

(E): [10, 20, 30, 40], Padding (P): ['valid', 'same'], Optimizer (O): ['Adam', 'SGD', 'RMSprop'], 

Momentum (M): [0.0, 0.2, 0.4, 0.6, 0.8, 0.9], and Decay (D): [0.0, 0.0001, 0.001, 0.01]. 

2. Specify the number of iterations: The number of iterations to 20. 

3. For each iteration, randomly sample a combination of hyper-parameters from the defined hyper-

parameter space. 

4. Train the model with the selected hyper-parameters on the training data and evaluate its 

performance on the validation data using a performance metric such as accuracy, precision, 

recall, or F1-score. 

5. Store the performance metrics for the current combination of hyper-parameters. 

6. Repeat steps 3- through 5 for the specified number of iterations. 

7. Select the best set of hyper-parameters that resulted in the best performance metric on the 

validation data. 

8. Finally, evaluate the model on the tested data with the fine-tuned hyper-parameters.  

 

 

Likewise, The ESSDN-LDV2 uses the Random 

Search Algorithm (RSA) to tune the SSD hyper-

parameters. It is trained with different 

combinations of hyper-parameters, evaluated its 

performance on the validation set, and collected 

the results for each hyper-parameter. 

Furthermore, ESSDN-LDV2 incorporates batch 

normalization, dropout regularization, and data 

augmentation, including shifting, zooming, and 

rotation. Table 1 presents the proposed RSA to 

find the optimal hyper-parameter settings for the 

model.  
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ESSDN-LDV3 

This model incorporates Feature Fusion (FF) by 

combining feature maps from different layers in 

SSD to capture low-level and high-level features 

at different levels. The FF applied a concatenation 

operation between the desired feature maps to 

ensure that the model gets fine-grained details 

and semantic and contextual information from 

the low and high levels of features. Also, ESSDN-

LDV3 incorporates SCs in the same way as 

ESSDN-LDV2. 

ESSDN-LDV3 incorporates FF and SCs in the SSD 

architecture to leverage multi-scale features for 

object detection. The FF captures spatial details 

and contextual information, and SCs facilitate the 

flow of features across different levels in the 

model. This integration enables ESSDN-LDV3 to 

enhance the accuracy of detecting lung diseases. 

Likewise, ESSDN-LDV3 incorporates the Genetic 

Algorithm (GA) for fine-tuning the model's hyper-

parameters, replacing the random search 

algorithm. The GA optimizes the hyper-

parameters through an iterative process that 

simulates natural selection and evolution.  

 

 

Table 2: The proposed deployed genetic algorithm 

The proposed GA to find the optimal hyper-parameter settings for the ESSDN-LDV3 model 

Input: A set of hyper-parameters to be optimized: R, B, E, P, O, M, and D). 

F(V): A fitness function that evaluates the performance of a model with a given set of hyper-parameters (It 

measures how well the model performs on a specific task, such as classification accuracy and mean squared 

error). 

N: A population size (Set to 50). 

MR: A mutation rate (the probability of a gene being mutated during the crossover ranges from 0.01 to 0.1, 

meaning that each gene in a solution has a 1% to 10% chance of being mutated during crossover). 

CR: A crossover rate (the probability of genes being exchanged between two parents during the crossover ranges 

from 0.5 to 0.9, meaning there is a 50% to 90% chance that genes will be exchanged between two parents during 

crossover). 

TC: a stopping criterion for the algorithm. 

 

Procedure: 

1. Initialization: Randomly, generate an initial population of potential solutions (sets of hyper-

parameters): 

R = [.000001 – 1), B = {16, 32, 64, 128,256}, E = [10, 200], P = {'valid', 'same'}, O = {'Adam', 'SGD', 'RMSprop'}, M 

= [0.0, 1), and D = {0.0, 0.01, 0.001, 0.0001}. 

2. Evaluation: Calculate F(V) value for the N vectors (V). 

 
3. Selection: Select the best-performing solutions from the current population to be used as parents for 

the next generation using the roulette wheel selection strategy. 

4. Crossover: Apply crossover to the selected parents to create a new population of potential solutions.  

5. Mutation: Apply mutation to some of the newly created offspring solutions with a probability 

determined by the mutation rate. 

6. Evaluation: Evaluate the fitness of each solution in the new population using the fitness function. 

7. Selection: Select the best-performing solutions from the new population to be used as parents for the 

next generation. 

8. Termination: Repeat steps 4 through 7 until a maximum number of generations, or the fitness value is 

one or converges. 

9. Output: Return the best solution found during the optimization process. 

10. Choose the best set of hyper-parameters: That resulted in the best performance metric on the 

validation data. 

11. Evaluate the model on the test data: Train the model with the best set of hyper-parameters on the 

combined training and validation data and evaluate its performance on the tested data. 
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Figure 2: The ESSDN-LD operations for detecting lung diseases 

By leveraging this algorithm, ESSDN-LDV3 aims 

to achieve better performance by finding optimal 

hyper-parameter configurations that enhance the 

model's ability to detect and classify lung 

diseases accurately. Furthermore, ESSDN-LDV2 

incorporates batch normalization, dropout 

regularization, and data augmentation, including 

shifting, zooming, and rotation. Table 2 lists the 

proposed GA to find the optimal hyper-parameter 

settings for the model. 

ESSDN-LD in diagnosing process 

In the diagnosis process, ESSDN-LD utilizes 

several pre-processing techniques, including 

resizing, normalization, noise reduction, and 

image enhancement, to ensure the consistency 

and quality of the input X-ray image. Once the 

input image is pre-processed, ESSDN-LD extracts 

relevant features and patterns from the input 

images using its deep learning architecture. By 

analysing these features, the model can identify 

potential disease indicators and test the presence 

of atelectasis, cardiomegaly, pleural thickening, 

pulmonary fibrosis, COVID-19, and pneumonia or 

the absence of these diseases. 

The diagnostic output of ESSDN-LD provides 

valuable information to healthcare professionals, 

including the predicted diseases and their 

corresponding probabilities and localization. 

Figure 2 indicates the ESSDN-LD operations for 

detecting lung diseases. 

Performance metrics 

The effectiveness of the ESSDN-LD in detecting 

lung diseases was assessed using several metrics. 

These metrics include accuracy (ACC), precision 

(P), recall (R), and F1 score. 

The performance metrics of the model are 

calculated based on four records. True Positives 

(TP) refer to the number of cases that are 

accurately classified as positive by the model. 

True Negatives (TN) represent the number of 

correctly classified cases as negative by the 

model. Thirdly, False Positives (FP) represent the 

number of incorrectly classified cases as positive 

when they are negative. Finally, False Negatives 
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(FN) represent the number of incorrectly 

classifies cases as negative when they are 

positive.  

The ACC represents the proportion of correctly 

predicted cases (TP and TN) out of all cases. A 

high accuracy signifies that the model has a 

substantial number of correct disease predictions 

compared to the overall predictions, indicating a 

good model performance. Equation (1) shows the 

ACC calculation. 

                                  (1) 

The R represents the proportion of correctly 

identified positive cases (TP) out of all the 

positive cases (TP and FN). A high recall score 

indicates that the model effectively detects the 

positive cases, meaning it has a low rate of FN. 

Equation (2) indicates the R calculation. 

                                                                     (2) 

The P represents the proportion of correctly 

identified positive cases (TP) out of all the cases 

predicted as positive (TP and TN). A high 

precision value indicates that the model 

accurately identifies positive cases (TP) with high 

confidence. Equation (3) computes the P value. 

                                                                       (3) 

The F1 score combines P and R into a single 

metric. It represents the ability of the model to 

identify both positive and negative cases. A high 

F1 score indicates that the model has high P and 

R. Equation (4) represents the F1calculation. 

                                                      (4) 

Furthermore, the training accuracy chart was 

used to demonstrate the model's accuracy 

progression throughout successive training 

epochs. It provides insights into how effectively 

the model is learning and adjusting its 

parameters to fit the training data. As the training 

accuracy increases with each epoch, it indicates 

that the model has successfully acquired learning 

and improving its performance. 

Data description 

The ESSDN-LD model is trained and evaluated 

using two datasets. The first dataset consists of 

images for six diseases (aortic enlargement, 

cardiomegaly, pleural thickening, pulmonary 

fibrosis, COVID-19, and pneumonia) and health 

images (DSSD). The second dataset includes 

images for COVID-19, pneumonia, and health 

images (DSCP). The DSSD dataset is collected 

from three public datasets: The VinDr-CXR 

dataset [20, 21], the RSNA Pneumonia Detection 

dataset [22], and the SIIM-FISABIO-RSNA COVID-

19 dataset [23]. Table 3 provides the number of 

images and objects of each disease in the DSSD 

dataset. Furthermore, the DSCP Dataset is 

collected from the RSNA Pneumonia Detection 

Dataset, and the SIIM-FISABIO-RSNA COVID-19 

Dataset. The DSCP contains 1500 records for each 

COVID-19, pneumonia, and no-finding cases. 

 

Table 3: The Lung diseases in the collected DSSD dataset, each with its number of images 

Lung Disease Number of images Total bounding boxes 

Aortic enlargement 3067 7162 

Cardiomegaly 2300 5427 

Pleural thickening 1981 4842 

Pulmonary fibrosis 1617 4655 

Covid-19 4295 7855 

Pneumonia 6012 9555 

No-finding 10000 10000 

Total 29272 63506 
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Results and Discussion  

This section presented the performance 

evaluation of the ESSDN-LD model in all versions 

using two datasets: DSSD and DSCP. The ESSDN-

LD model was implemented using Python 

programming language and PyTorch framework 

with several software libraries such as numpy, 

scipy, cv2, and pandas to support the 

development and evaluation process. 

Training and Validation in the DSSD 

During the training and validation of the ESSDN-

LDV1, ESSDN-LDV2, and ESSDN-LDV3 models, it 

was observed that ESSDN-LDV3 performed the 

best in both phases. In the training phase, it 

consistently showed an increase in accuracy with 

each epoch, surpassing the performance of the 

other versions. ESSDN-LDV1 achieved a training 

accuracy of 88.1%, ESSDN-LDV2 achieved 97.4%, 

and ESSDN-LDV3 achieved an impressive training 

accuracy of 99.6%. Also, the ESSDN-LDV3 

exhibited continuous learning and improvement 

in each epoch, consistently enhancing its 

performance over time. Figure 3 demonstrates 

the training accuracy of the three versions of the 

ESSDN-LD in the DSSD. In the validation dataset, 

ESSDN-LDV1 also outperformed the other 

versions, achieving an accuracy of 93.2%. ESSDN-

LDV2 achieved an accuracy of 90.2%, while 

ESSDN-LDV1 achieved 80.4%. Furthermore, the 

optimal hyper-parameters for the ESSDN-LDV2 

version were determined by the RSA: K= 0.0001, 

B = 32, E = 90, P = same, O = SGD, M= 0.5, and D= 

0.001. For the ESSDN-LDV3 version, the optimal 

hyper-parameters were found by the GA: K = 

0.001, B = 32, E = 120, P = same, O = SGD, M = 0.4, 

and D = 0.0001. 

 

 

Figure 3: The training accuracy of the ESSDN-LDV1, ESSDN-LDV2, and ESSDN-LDV3 in the DSSD 

Table 4: The performance metrics of the ESSDN-LDV1 version in each lung disease of the DSSD 

Lung Disease ACU P R F1-score 

Aortic Enlargement 94.1 0.85 0.72 0.78 

Cardiomegaly 95.3 0.81 0.75 0.78 

Pleural Thickening 96.5 0.82 0.83 0.82 

Pulmonary Fibrosis 96.9 0.83 0.84 0.84 

COVID-19 94.5 0.84 0.81 0.82 

Pneumonia 95.3 0.88 0.88 0.88 

No-finding 94.7 0.82 0.95 0.88 
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Test dataset in the DCSSD 

The performance evaluation of the ESSDN-LD 

versions involves using unseen test data to 

predict multiple classification labels. The ESSDN-

LDV1 achieved a correct classification rate of 

83.6% for objects in all test images, with 16.33% 

misclassified objects. The ESSDN-LDV2 achieved 

a correct classification rate of 93.7% for objects 

in all test images, with 6.7% misclassified objects. 

The ESSDN-LDV3 demonstrated a higher 

performance, correctly classifying 96.5% of the 

objects with 3.5% misclassified objects. Total 

accuracy of 83.67% was achieved in the ESSDN-

LDV1. Furthermore, the ESSDN-LDV1 version 

achieved an average accuracy of 83.7% in 

detecting lung diseases. Also, it achieved the 

highest accuracy of 96.94% in detecting 

pulmonary fibrosis. Table 4 shows the 

performance metrics of the ESSDN-LDV1 version 

in each lung disease of the DSSD. 

The ESSDN-LDV2 achieved an average accuracy 

of 93.7%. The highest accuracy achieved by this 

version was 96.94% in the detection of 

pulmonary fibrosis. Table 5 shows the 

performance metrics of the ESSDN-LDV2 version 

in each lung disease of the DSSD. 

The ESSDN-LDV3 achieved an average accuracy 

of 96.46%. The highest accuracy achieved by this 

version was 99% in the Aortic enlargement 

detection. Table 6 presents the performance 

metrics of the ESSDN-LDV3 version in each lung 

disease of the DSSD. 

 

Table 5: The performance metrics of the ESSDN-LDV2 version in each lung disease of the DSSD 

Lung Disease ACU P R F1-score 

Aortic enlargement 98.2 0.95 0.93 0.94 

Cardiomegaly 98.1 0.93 0.89 0.91 

Pleural thickening 98.0 0.91 0.88 0.90 

Pulmonary fibrosis 98.6 0.92 0.93 0.93 

COVID-19 98.2 0.95 0.93 0.94 

Pneumonia 98.5 0.96 0.96 0.96 

No-finding 97.7 0.92 0.98 0.95 

 

Table 6: The performance metrics of the ESSDN-LDV3 version in each lung disease of the DSSD 

Lung Disease ACU P R F1-score 

Aortic enlargement 99 0.98 0.95 0.96 

Cardiomegaly 98.9 0.96 0.94 0.95 

Pleural thickening 98.8 0.95 0.93 0.94 

Pulmonary fibrosis 99.2 0.96 0.96 0.96 

COVID-19 98.9 0.98 0.95 0.97 

Pneumonia 99.4 0.98 0.99 0.98 

No-finding 98.7 0.94 1 0.97 

 

Training and Validation in the DSCP 

During the training and validation of the ESSDN-

LDV1, ESSDN-LDV2, and ESSDN-LDV3 models, it 

was observed that ESSDN-LDV3 performed the 

best in both phases. The ESSDN-LDV1 achieved a 

training accuracy of 91.5%, the ESSDN-LDV2 

achieved 97.8%, and the ESSDN-LDV3 achieved 

an impressive training accuracy of 99.8%. 

Likewise, it demonstrated continuous learning 

and improvement in each epoch, steadily 

enhancing its performance over time. Figure 4 

illustrates the training accuracy of three versions 

of ESSDN-LD in the DSCP. In the validation 

dataset, the ESSDN-LDV1 also outperformed the 

other versions, achieving an accuracy of 95.3%. 

The ESSDN-LDV2 achieved an accuracy of 93.2%, 

while the ESSDN-LDV1 achieved 84.6%. 

Furthermore, the optimal hyper-parameters for 

the ESSDN-LDV2 version were determined by the 

RSA: K= 0.0001, B = 32, E = 80, P = same, O = SGD, 

M= 0.5, and D= 0.001. For the ESSDN-LDV3 

version, the optimal hyper-parameters were 

found by the GA: K = 0.001, B = 32, E = 90, P = 

same, O = SGD, M = 0.4, and D = 0.0001. 
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Figure 4: The training accuracy of the ESSDN-LDV1, ESSDN-LDV2, and ESSDN-LDV3 in the DSCP 

Test dataset in the DSCP 

The ESSDN-LDV3 achieved the highest accuracy 

among all other versions, with an accuracy of 

98.4%. In comparison, the ESSDN-LDV2 achieved 

an accuracy of 96%, and the ESSDN-LDV1 

achieved 88.7%. The performance metrics for 

each version of the ESSDN-LD in the DSCP are 

presented in Tables 7, 8, and 9. Analysing the 

confusion matrices, the ESSDN-LDV3 

demonstrated the superior performance, 

correctly classifying 97.9% of objects belonging 

to COVID-19, 98.4% of objects belonging to 

pneumonia, and 98.7% of the no-finding class. 

Figures 7, 8, and 9 depict the confusion matrices 

for the ESSDN-LDV1, ESSDN-LDV2, and ESSDN-

LDV3 experiments in the DSCP, respectively. In 

these matrices, the labels '0' represent COVID-19, 

'1' represents pneumonia, and '2' represents no-

finding. 

ESSDN-LD outputs 

The ESSDN-LD model demonstrates a high level 

of proficiency in identifying and precisely 

localizing the specific observations of aortic 

enlargement, cardiomegaly, pleural thickening, 

pulmonary fibrosis, COVID-19, and pneumonia 

within the lung region. Figure 8 shows sample 

outputs of the ESSDN-LD model depicting the 

detection and localization of abnormalities. 

Ground truth images (a), (b), and (c) are 

compared with the outputs of ESSDN-LDV1 (a1, 

b1, and c1), ESSDN-LDV2 (a2, b2, and c2), and 

ESSDN-LDV3 (a3, b3, and c3). The red boxes 

indicate cardiomegaly, the green boxes indicate 

pleural thickening, and the arctic boxes indicate 

aortic enlargement. Among the different versions, 

the ESSDN-LDV3 stands out as the best 

performer. In Figure 9, the ESSDN-LDV3 exhibits 

a high detection rate for COVID-19 in image (a). It 

successfully detects three diseases in image (b) 

pleural thickening, aortic enlargement, and 

cardiomegaly, while the other versions fail to do 

so. Furthermore, the ESSDN-LDV3 accurately 

diagnoses the image (c) as a healthy image. 

This study introduces the ESSDN-LN model, 

which demonstrates its effectiveness in rapidly 

and precisely detecting, diagnosing, and 

localizing six lung diseases: Aortic enlargement, 

cardiomegaly, pleural thickening, pulmonary 

fibrosis, COVID-19, and pneumonia. 
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Table 7: The performance metrics of the ESSDN-LDV1 version in each lung disease of the DSCP 

Lung Disease ACU P R F1-score 

COVID-19 92.2 0.89 0.88 0.88 

Pneumonia 92.7 0.88 0.90 0.89 

No-finding 92.4 0.89 0.88 0.89 

Table 8: The performance metrics of the ESSDN-LDV2 version in each lung disease of the DSCP 

Lung Disease ACU P R F1-score 

COVID-19 97.0 0.96 0.95 0.96 

Pneumonia 97.3 0.96 0.96 0.96 

No-finding 97.7 0.96 0.97 0.97 

Table 9: The performance metrics of the ESSDN-LDV3 version in each lung disease of the DSCP 

Lung Disease ACU P R F1-score 

COVID-19 98.7 0.98 0.98 0.98 

Pneumonia 98.9 0.98 0.98 0.98 

No-finding 99.2 0.99 0.99 0.99 

 

Figure 5: The confusion matrices for the ESSDN-LDV1 experiments in the DSCP, the labels 0, 1, and 2 represent 

COVID-19, pneumonia, and no-finding, respectively 

 

Figure 6: The confusion matrices for the ESSDN-LDV2 experiments in the DSCP, the labels 0, 1, and 2 represent 

COVID-19, pneumonia, and no-finding, respectively 
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Figure 7: The confusion matrices for the ESSDN-LDV3 experiments in the DSCP, the labels 0, 1, and 2 represent 

COVID-19, pneumonia, and no-finding, respectively 

 

Figure 8: Sample of the ESSDN-LD outputs, ground truth images (a), (b), and (c), are compared with the outputs 

of ESSDN-LDV1 (a1, b1, and c1), ESSDN-LDV2 (a2, b2, and c2), and ESSDN-LDV3 (a3, b3, and c3). The red boxes 

indicate cardiomegaly, the green boxes indicate pleural thickening, and the arctic boxes indicate aortic 

enlargement 
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The proposed versions of the ESSDN-LD model 

show promising results in accurately detecting 

and classifying these diseases in chest X-ray 

images. The ESSDN-LDV3 version achieves scores 

of accuracies between 98.69% and 99.4% for 

each lung disease, while the ESSDN-LDV2 version 

achieves scores of accuracies between 97.72% 

and 98.4% for each lung disease.  

The ESSDN-LDV2 version outperforms the 

ESSDN-LDV1 due to the robust tuning of hyper-

parameters using the RSA and applying skip 

connections. Skip connections connected the 

output of the earlier layers to the later layers, 

combining feature maps from different levels to 

provide comprehensive details about the input 

image, thereby improving detection and 

classification performance. Also, the ESSDN-LDV3 

version integrates feature fusion and skip 

connections in the SSD architecture to leverage 

multi-scale features for object detection. Feature 

fusion captures spatial details and contextual 

information, while kip connections facilitate the 

flow of features across different levels in the 

model. This integration enhances the accuracy of 

detecting lung diseases. 

Furthermore, the performance of all ESSDN-LD 

models was better in the dataset with three 

classes. This observation highlights the 

importance of the number of images per class in 

influencing the performance of the SSD model. 

When the dataset includes more examples for 

each class, the model can learn better and 

effectively detect abnormalities. That means 

having a suitable number of images per class is 

crucial for the model to achieve optimal 

performance and accurately identify lung 

diseases. Hence, it provides more diverse 

examples and variations of the disease patterns, 

allowing it to learn and generalize better.  

Notably, the ESSDN-LDV3 version misclassifies 

3.5% of the test images in the seven-class 

classification of the DSSD dataset and 1.5% of the 

test images in the three-class classification of the 

DSCP Dataset. These results demonstrate that the 

ESSDN-LDV3 model can assist healthcare 

professionals in making informed decisions about 

patient care and treatment plans, thereby 

improving the accuracy and efficiency of the 

diagnostic process. 

Moreover, the performance of the proposed 

ESSDN-LD model is compared with state-of-the-

art models for the three-class classification of 

COVID-19, pneumonia, and no-finding. The 

comparison clearly demonstrates that the ESSDN-

LDV3 version outperformed state-of-the-art 

models in terms of accuracy. These results 

highlight the potential of the ESSDN-LD model for 

automated diagnosis and detection of lung 

diseases. Table 10 lists a comparison of state-of-

the-art models and the ESSDN-LDV3 version. 

This study makes several significant 

contributions to the field of lung disease 

detection and classification: 

Development of the ESSDN-LD model: 

The ESSDN-LD model has effectively addressed 

the challenges associated with manual X-ray 

image analysis in the diagnosis and detection of 

lung diseases; time-consuming consuming, 

subjective, and prone to inaccuracies. 

The ESSDN-LD model has demonstrated 

impressive accuracy in detecting and classifying 

lung diseases. In particular, it achieves a 

remarkable accuracy rate of 98.4% in detecting 

two specific diseases and 96.46% in a broader 

range of six.  

The model demonstrates early detection 

capabilities with prediction times between 0.013 

and 0.018 seconds. This rapid response can be 

crucial in providing timely treatment and 

preventing the worsening of diseases. 

The ESSDN-LD model is non-invasive, eliminating 

the need for physical contact with patients. It 

provides a computer-aided detection and 

classification system based on X-ray images. 

It is a cost-effective version that requires minimal 

human intervention. The model can process large 

amounts of data with a general-purpose PC, 

making it a viable option for lung disease 

screening and diagnosis. 

The scalability of the ESSDN-LD model allows it 

to handle large data, making it suitable for use in 

large-scale screening programs and public health 

initiatives. 

The study has successfully showcased the 

potential of the SSD network for automated 

diagnosis and detection of lung diseases. 
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Table 10: A comparison of state-of-the-art models and the ESSDN-LDV3 version 

Study Model Accuracy 

Arifin et al. [13] Single Shot Detection MobileNet model 93.24% 

Reshan et al. [24] MobileNet Model 94.23% 

Apostolopoulos and Mpesiana [25] MobileNetV2 96.78% 

Karaci et al. [26] VGGCOV19-NET: YOLOv3 97.16% 

Kaya et al.   [27] MobileNetV2+Exponential fine-tuning 97.61% 

Kedia et al.  [28] CoVNet-19 98.28% 

This study Enhanced Single Shot Multi-box Detector Network 98.40% 

 

Conclusion 

The prevalence of lung diseases, including 

pulmonary fibrosis, COVID-19, and pneumonia, 

has necessitated the development of accurate and 

efficient detection methods. This study addressed 

this need by proposing the enhanced SSD for lung 

disease detection and classification (ESSDN-LD) 

model. By incorporating various enhancement 

versions such as batch normalization, dropout 

regularization, early stopping, data augmentation, 

hyper-parameter tuning, feature fusion, and skip 

connections, the ESSDN-LD model achieved 

impressive accuracy in detecting and classifying 

lung diseases. 

The obtained results demonstrated the 

superiority of the ESSDN-LD model over state-of-

the-art models such as FAST-RNN, standard SSD, 

and Single Shot Detection MobileNet. The ESSDN-

LD model achieved high accuracy scores for 

disease classification and demonstrated its 

capability to detect seven different lung diseases, 

with a remarkable accuracy rate of 98.4% for two 

disease detection and 96.46% for the broader 

range of six. These results highlight the 

effectiveness of the enhancement strategies 

employed in the ESSDN-LD model. 

Moreover, the study showcased the potential of 

the SSD network for automated diagnosis and 

detection of lung diseases. The ESSDN-LD model, 

with its powerful performance and accuracy, has 

the potential to assist doctors and radiologists in 

the rapid and successful diagnosis of lung 

diseases based on X-ray images. 

In future studies, researchers can explore the use 

of transfer learning to improve the performance 

of the deep learning model, investigating the 

multi-modal data, such as combining CT scans 

and X-rays, developing an online system for real-

time diagnosis, and expanding the application of 

the ESSDN-LD model to other lung diseases or 

medical imaging applications. All of these are 

promising avenues for future exploration. 
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