

Original Article

Journal of Medicinal and Chemical Sciences

Journal homepage: <u>http://www.jmchemsci.com/</u>

Detection of Active Chemical Compounds in Lycium Shawii Plant Using GC-MS Technique and Their Evaluation as Antioxidant

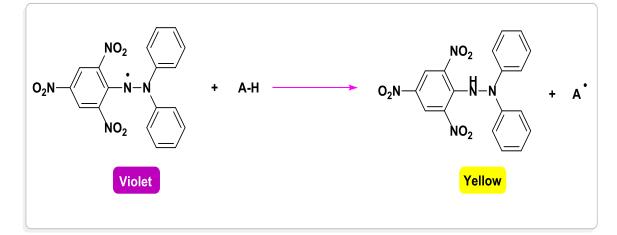
Ebtihaj Jassim Jabur, Ali Noory Fajer* 🕩

Department of chemistry, College of Education, University of AL-Qadisiyah, Iraq

ARTICLE INFO

Article history

A B S T R A C T


Receive: 2023-04-16 Received in revised: 2023-05-01 Accepted: 2023-05-11 Manuscript ID: JMCS-2304-2035 Checked for Plagiarism: **Yes** Language Editor: Dr. Fatima Ramezani Editor who approved publication: Dr. Gholamabbas Chehardoli

DOI:10.26655/JMCHEMSCI.2023.10.11

KEYWORDS

Lycium shawii Antioxidant GC-MS technology Medicinal chemistry Lycium shawii is considered a thorny perennial and wild plant. Bramble usually grows in dry and hot lands because this plant lives on moisture. The height of the plant reaches one and a half meters, sometimes up to two meters, and is considered as a deciduous shrub whose leaves fall off during the months of July and August, and sometimes it continues until September in two types, L.edgworthii and L.dasystemum, while in the rest of the other species, it continues until December and may continue until February. Using the GC-MS technology has emerged many active compounds for Lycium shawii from these compounds are Butyn-1-ol, Carbonic acid, dimethyl ester, Carbonic acid, dimethyl ester, Ethene, methox, Diazene, dimethyl, Diadimethyl, Hexadecenoic acid, methyl ester Pentadecanoic acid, methyl ester. -(ethenylthio), 9,12-Octadecadienoic acid, methyl ester, 6-Octadecenoic acid, methyl ester 9-Octadecenoic acid (Z), methyl ester Octadecenoic acid, methyl ester, Phytol methyl stearate methyl ester, Heptadecanoic acid, and 16-methyl and another compounds .The results showed an evaluation of the antioxidant activity of extracts (roots, leaves, and stems) of Lycium shawii plant. For the aqueous and alcoholic extract using DPPH, the aqueous extract of leaves is the best antioxidant than other extracts.

GRAPHICALABSTRACT

Introduction

Lycium shawiiL is a perennial deciduous shrub with orange-red a nightshade plant with a long history in China and has been used in medicine and functional foods. Lycium shawii contains many nutrients, such as polysaccharides, phenolic acid, carotene, betaine, and flavonoids, which possess many advantages, such as antioxidant, anti-radiation, anti-cancer, anti-aging properties, promoting hematopoiesis, brightening eyes, etc. [1]. Likewise, it is included in traditional Chinese Medicines [2]. By reviewing studies related to the use of Lycium shawii in the treatment of diabetes, it was concluded that Lycium shawii has the potential to be an effective treatment for diabetes and is an excellent alternative to chemical drugs as it does not contain any harmful effects [3]. Many studies have confirmed that food additives rich in antioxidants play an important role [4, 5]. In the prevention and treatment of many diseases, as the fruits of the Lycium shawii plant contain sugars, vitamins C and E and carotenoids, flavonoids, and betain, which are effective antioxidants that work to curb free radicals It increases the activity of enzymatic antioxidants

[6, 7], and thus reduces the oxygenation of cells that cause apoptosis [8], studies indicated that alcoholic extract the leaves of Lycium shawii plant enhance antioxidants because they contain many phenolic compounds such as Chlorogenic acid and rutin, found the stems of the plant compounds that contain many act as antioxidants, such as vitamin E and flavanols such as Quercetin-3-O-rutinoside [9]. Studies have confirmed that bramble contains many mineral elements, the most important of which are potassium, sodium, phosphorus, magnesium, calcium and iron [10], and also contains organic acids [11].

Materials and Methods

Ascorbic acid, Na₂EDTA, ammonium acetate, glacial acetate acid, acetyl acetone, trichloro acetic acid, potassium dihydrogen phosphate, sodium phosphate dibasic, DMSO, and DPPH, ethanol alcohol were purchased form Sigma-Aldrich. The plant was collected from the agricultural areas in Diwaniyah.

Preparation of Lycium shawii is shown in Figure 1 [12].

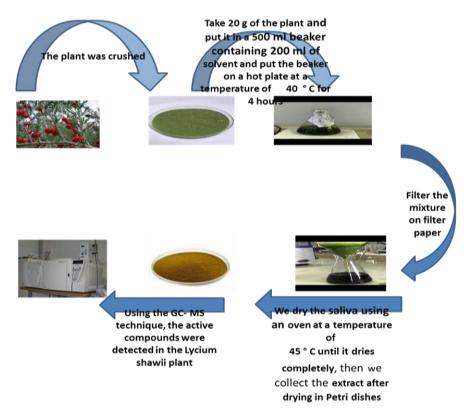


Figure 1: Steps to access the GC-MS technology [13]

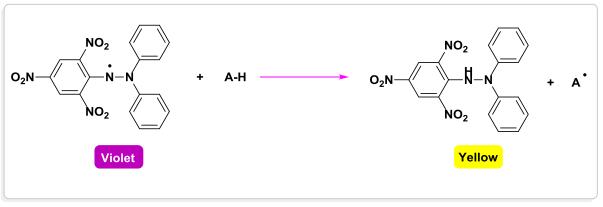
Evaluation of antioxidant activity of extracts (roots, leaves, and stems) of Lycium shawii plant is depicted in Figure 2 [14].

Hydroxyl radical scavenging activity

Hydroxyl radical scavenging activity of the extract was carried out by Inbathamizh method [15, 16].

Procedure and principle

Various concentrations of Lycium shawii extracts were added to 1.0 ml of Na₂EDTA solution prepared by dissolving 0.13 g of ferrous ammonium sulfate and 0.26 g of Na₂EDTA in 100 ml of water and mixed with 1.0 ml of dimethyl sulfoxide 0.85%, and then the mixture was added to 0.1 M phosphate buffer (PH 7.4) to initiate the reaction by adding 0.5 ml of 0.22% ascorbic acid. The reaction mixture was kept in a water bath at 90 °C for 15 min and the reaction was quenched by adding 1.0 ml of 7.5% trichloroacetic acid. After that, 3 ml of Nash reagent (75 g of ammonium acetate, 3 ml of glacial acetic acid and 2 ml of acetyl acetone in 1.0 L of water) was added to all the test tubes and incubated for 15 min for color development. The mixture was obtained without ascorbic acid served as control. Absorbance was observed at 412 nm.


Results and Discussion

Lycium shawii root aqueous extract sample

Lycium shawii root aqueous extract sample show in Figure 3 and Table 1 show the compounds of the root aqueous extract.

Lycium shawii root ethanolic extract sample

Lycium shawii root ethanolic extract sample show in Figure 4 and Table 2 show the compounds of the root ethanolic extract.

Figure 2: Reaction of DPPH with AH [15]

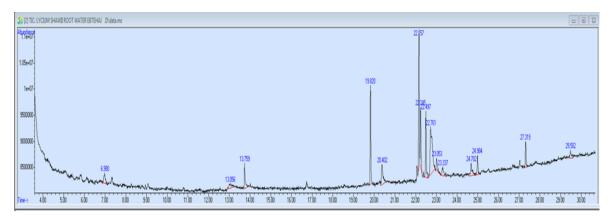


Figure 3: GC-MS results of root aqueous extract

E. Jassim Jabur and A. Noory Fajer / J. Med. Chem. Sci. 2023, 6(10) 2518-2530

PK RT Area% Compounds							
РК	RT	Area%	Compounds				
			Cis-Aconitic anhydride				
1	6.98	3.05	Pyrimidine, 4,6-dimethoxy-5-nitro				
			Butyn-1-ol				
			3-Butyn-1-ol				
2	13.056	2.44	Diazene, dimethyl-				
			Butyn-1-ol 3-				
			Cetrimonium_Bromide				
3	13.757	4.15	Dimantine				
			Benzyldimethylhexadecylammonium chloride				
4	19.816	12.43	Hexadecanoic acid, methyl ester				
			2-Pyrrolidinethione				
_		F 0.0	1,2,2,3,4-Butanepentacarbonitrile				
5	20.404	5.90	Spirohexanone, 5,5-dichloro-4				
			9-Octadecenoic acid, methyl ester				
6	22.161	16.87	11-Octadecenoic acid, methyl ester				
			trans-13-Octadecenoic acid, methyl ester				
7	22.248	8.10	Heptanedioic acid, dimethyl ester				
		8.86	Methyl stearate				
8	22.499		Heptadecanoic acid, 16-methyl-, methyl ester				
			Pyrazine, ethoxy				
9	22.758	19.33	Propanedioic acid, 2-propenyl-, dimethyl ester				
-			Spirohexan-4-one, 5,5-dimethyl				
			Pyrrolidinethione 2-				
10	23.053	2.76	1,2,2,3,4-Butanepentacarbonitrile				
			3-Butyn-1-ol				
		4.21	Pyrimidine, 4,6-dimethoxy-5-nitro				
11	24.706		Ethanedicarboxamide, N-allyl-N'-(2,5-				
			Dimethylphenyl)				
12	24.983	2.96	Heptanedioic acid, dimethyl ester				
12	24.703	2.90					
13	27.320	3.78	Heptanedioic acid, dimethyl ester				
	00 501		Spiro[2.3]hexan-4-one, 5,5-dichloro-6-methyl				
14	29.501	2.23	Heptanedioic acid, dimethyl ester				

Table 1: Compounds of the root aqueous extract

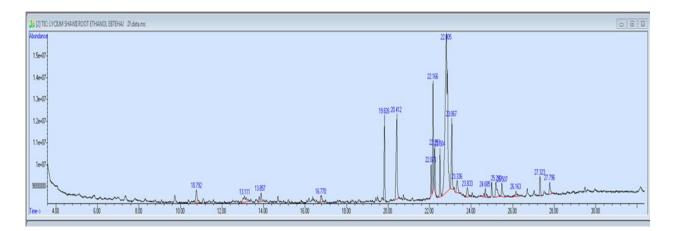


Figure 4: GC-MS results of root ethanolic extract

E. Jassim Jabur and A. Noory Fajer / J. Med. Chem. Sci. 2023, 6(10) 2518-2530

DU	Table 2: Compounds of the root ethanolic extract						
РК	RT	Area%	Compounds				
1	13.108	2.05	Diazene, dimethyl				
			4-Spirohexanone, 5,5-dichloro				
2	13.861	1.30	Diazene, dimethyl				
-	10.001	1.50	Ethene, methoxy				
			Dimenhydrinate				
3	16.769	1.20	2-Propanamine, N-methyl				
			dodecyl ester Fumaric acid, 2-dimethylaminoethyl				
4	19.824	5.78	Hexadecanoic acid, methyl ester				
1	17.021	5.70	Pentadecanoic acid, methyl ester				
5	20.413	9.54	N-Hexadecanoic acid				
5	20.115	5.51	Pentadecanoic acid				
		2.33	9,12-Octadecadienoic acid (Z,Z)				
6	22.075		9,12-Octadecadienoic acid, methyl ester				
			9,12-Octadecadienoic acid (Z,Z),methyl ester				
	22.170		9-Octadecenoic acid, methyl ester,(E)				
7		8.03	11-Octadecenoic acid, methyl ester				
			Trans-13-Octadecenoic acid, methyl ester				
	22.256	3.40)9-Octadecenoic acid, methyl ester,(E				
8			11-Octadecenoic acid, methyl ester				
			9-Octadecenoic acid(Z), methyl ester				
9	22.507	3.63	Methyl stearate				
9			Heptadecanoic acid, 16-methyl-, methyl ester				
10	22.802	41.14	Oleic Acid				
10	22.002	41.14	9-Octadecenoic acid, (E)				
11	23.070	6.24	Octadecanoic acid				
			Spirohexan-4-one, 5,5-dimethyl				
12	23.832	1.46	Spirohexan-5-one				
) 1H)-Pyrimidinone, 2-(butylthio(4				
10	25.234	2.61	N-Trifluoroacetylimidazole				
13			3-Butyn-1-ol				
14	25.511	1.76	1,2,2,3,4-Butanepentacarbonitrile				
	27.320		Docosanoic acid, methyl ester				
15			Nonadecanoic acid, methyl ester				
			Methyl stearate				
L							

Table 2: Compounds of the root ethanolic extract

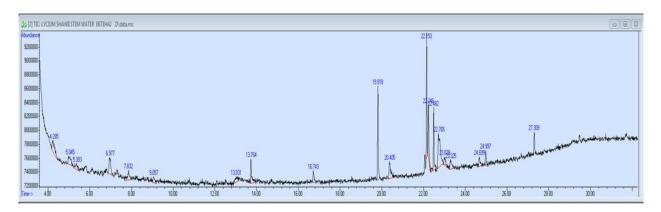
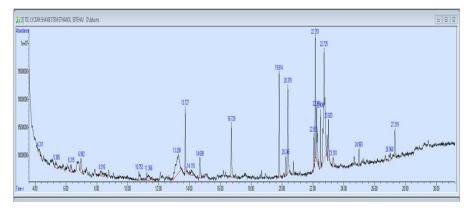
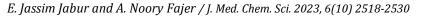


Figure 5: GC-MS results of stem aqueous extract


Lycium shawii stem aqueous extract sample

Lycium shawii stem ethanolic extract sample

Lycium shawii stem aqueous extract sample show in Figure 5 and Table 3 show the compounds of the stem aqueous extract. Lycium shawii stem ethanolic extract sample show in Figure 6 and Table 4 show the compounds of the stem ethanolic extract.


РК	RT	Area%	Compounds					
1	4.288	4.93	3-Butyn-1-ol					
			Propanenitrile, 3-(6-bromo-3,4-met hylenedioxybenzylidenhydrazino)-3-					
2	5.041	3.36	0Х0-					
			Carbonic acid, dimethyl ester					
3	5.378	1.96	Ethene, methoxy					
5	5.570	1.90	Carbonic acid, dimethyl ester					
4	6.980	4.07	Urea					
4	0.900	4.87	Pyrimidine, 4,6-dimethoxy-5-nitro					
			Pyrimidine, 4,6-dimethoxy-5-nitro					
5	7.828	3.65	3-Chloro-N-[2-methyl-4(3H)-oxo-3-q					
5	7.020	5.05	Uinazolinyl]-2-thianaphthenecarbox amide					
			Heptane, 1-(ethenylthio)					
(9.057	2.03	3-Butyn-1-ol					
6	9.057	2.03	Heptane, 1-(ethenylthio)					
7	13.030	2.40	4-Spirohexanone, 5,5-dichloro					
8	13.765	4.58	Diazene, dimethyl					
9	16.743	2.20	Diazene, dimethyl					
10	19.815	11.85	Hexadecanoic acid, methyl ester Pentadecanoic acid,					
10			methyl ester					
11	20.404	4.88	2-Pyrrolidinethione					
11			1,2,2,3,4-Butanepentacarbonitrile Heptane, 1-(ethenylthio)					
		13.08	9-Octadecenoic acid, methyl ester, (E)					
12	22.152		11-Octadecenoic acid, methyl ester					
			Trans-13-Octadecenoic acid, methyl ester					
13	22.248	7.21	Heptanedioic acid, dimethyl ester					
14	22.401	0.07	Methyl stearate					
14	22.481	8.06	Heptadecanoic acid, 16-methyl-, methyl ester					
			Pyrazine, ethoxy					
15	22.767	13.36	1-Carboxycyclopropane-2-acetic acid (E), dimethyl ester					
15			N-Methyl-2-[1,1-dicyano-2-					
			(4-methoxyphenyl)-vinylimino]pyrrolidin					
10	22.025	2.00	2-Pyrrolidinethione 1,2,2,3,4-					
16	23.035	2.00	Butanepentacarbonitrile					
	25.000	2.21	Heptanedioic acid, dimethyl ester					
17			4-Bromo-N-[(2-pyridyl)aminomethyl] phthalimide					
)Heptane, 1-(ethenylthio					
10	27 24 4	2.76	Heptanedioic acid, dimethyl ester					
18	27.311	2.76	Spiro[2.3]hexan-4-one, 5,5-dichloro-6-methyl					
L	1							

E. Jassim Jabur and A. Noory Fajer / J. Med. Chem. Sci. 2023, 6(10) 2518-2530

Figure 6: GC-MS results of stem ethanolic extract

DIZ	I able 4: Compounds of the stem ethanolic extract						
PK	RT	Area%	Compounds				
1	4.314	1.32	3-Butyn-1-ol				
2 5.361		1.19	Ethene, methoxy				
			Diazene, dimethyl				
3	6.313	1.24	Ethene, methoxy				
0	0.010		Diazene, dimethyl				
4	Urea						
	6.980	2.41	Cis-Aconitic anhydride				
5	8.313	1.56	3-Butyn-1-ol				
0		1.00	Diazene, dimethyl				
6	10.754	1.43	Spirohexan-4-one, 5,5-dichloro-6,6 –dimethyl				
7	11.368	2.09	Pyrazine, methoxy-, 1-oxide				
8	13.203	9.99	3-Butyn-1-ol Carbonic acid, dimethyl ester				
9	13.731	4.19	Dimethyl palmitamine				
,			Cetrimonium Bromide Dodecyltrimethylammonium bromide				
10	14.112	1.23	2-Pyrrolidinethione				
11	16.726	5.05	Tetradonium Bromide				
	10.720	5.05	1-Hexanol, 6-(dimethylamino)				
12	19.816	7.08	Hexadecanoic acid, methyl ester				
12	17.010	/.00	Pentadecanoic acid, methyl ester				
13	20.248	1.39	Phthalic acid, isobutyl octyl este				
10	201210	107	Dibutyl phthalate				
14	20.378	7.97	N-Hexadecanoic acid				
	101070	,,,,,	Pentadecanoic acid				
			Spirohexan-4-one, 5,5-dimethyl				
15	22.049	1.97)1H)-Pyrimidinone, 2-(butylthio(4				
)1H)-Pyrimidinone, 2-(propylthio (4				
	22.153	8.07)9-Octadecenoic acid, methyl ester, (E				
16			11-Octadecenoic acid, methyl ester				
			9-Octadecenoic acid (Z)-, methyl ester				
17	22.490	22.490 3.56	Methyl stearate				
		0.00	Heptadecanoic acid, 16-methyl-, methyl ester				
	22.724		Oleic Acid				
18		21.16	Cis-9-Hexadecenoic acid				
			Cis-Vaccenic acid				
19	23.018	2.58)Heptane, 1-(ethenylthio				
20	26.965	1.40	Spirohexan-4-one, 5,5-dichloro-6,6-dimethyl				
21	27.320	2.36	Heptanedioic acid, dimethyl ester				

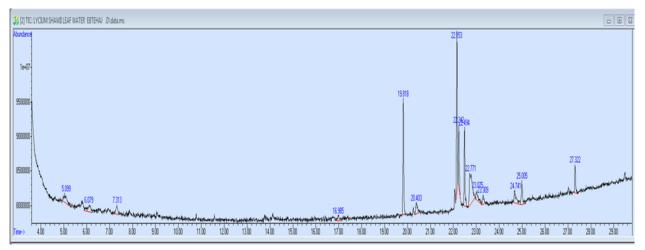
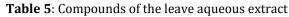
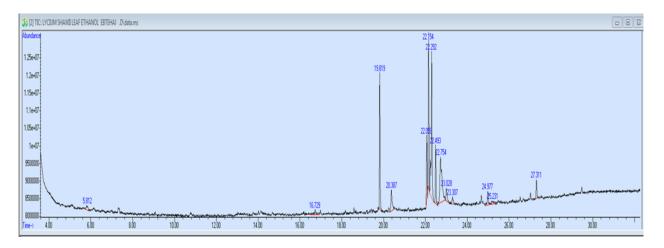
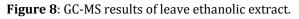





Figure 7: GC-MS results of leave aqueous extract

Table 5: compounds of the feave aqueous extract						
РК	RT	Area%	Compounds			
1	5.101	4.15	Ethene, methoxy			
1			3-Butyn-1-ol			
		2.68	4-Bromo-N-[(2-pyridyl)aminomethyl] phthalimide			
2	7.317		Heptanedioic acid, dimethyl ester			
			Heptane, 1-(ethenylthio)			
3	16.985	2.00	3-Butyn-1-ol			
4	19.816	14.53	Hexadecanoic acid, methyl ester			
4			Pentadecanoic acid, methyl ester			
	20.404	3.24	2-Pyrrolidinethione			
5			1,2,2,3,4-Butanepentacarbonitrile			
)Heptane, 1-(ethenylthio			
			9-Octadecenoic acid (Z)-, methyl ester			
6	22.152	19.03	9-Octadecenoic acid, methyl ester, (E			
			11-Octadecenoic acid, methyl ester			
7	22.490	10.01	Methyl stearate			
/			Heptadecanoic acid, 16-methyl-, methyl ester			
8	22.767	14.53	1,2-Cyclobutanedicarboxylic acid, 3-methyl-, dimethyl ester			
9	24.740	4.07	Pyrimidine, 4,6-dimethoxy-5-nitro			
10	25.009	4.50	Heptanedioic acid, dimethyl ester			

E. Jassim Jabur and A. Noory Fajer / J. Med. Chem. Sci. 2023, 6(10) 2518-2530

РК	RT	Area%	Compounds				
1	5.811	1.17	3-Butyn-1-ol Carbonic acid, dimethyl ester				
2	16.726	1 74	Ethene, methoxy				
2	10.720	1.74	Diazene, dimethyl				
2	Hexadecanoic acid, methyl ester						
3 19.816 14.71 Pentadecanoic acid, methyl ester							
4	20.387	4.57)Heptane, 1-(ethenylthio				
			9,12-Octadecadienoic acid, methyl ester				
5	22.057	6.21)9,12-Octadecadienoic acid (Z,Z				
			9,12-Octadecadienoic acid (Z,Z)-,methyl ester				
			6-Octadecenoic acid, methyl ester				
6	22.152	17.29	9-Octadecenoic acid (Z)-, methyl ester				
			11-Octadecenoic acid, methyl ester				
7	22.291	22.12	Phytol				
8	22.490	6.10	Methyl stearate				
0	22.470	Heptadecanoic acid, 16-methyl-, methyl ester					
	22.758	15.98)1H)-Pyrimidinone, 2-(butylthio(4				
9)1H)-Pyrimidinone, 2-(propylthio(4				
)1H)-Pyrimidinone, 2-(ethylthio(4				
10	23.027	3.027 2.47	Heptane, 1-(ethenylthio)-				
10	23.027	2.47	N-Trifluoroacetylimidazole				
	23.304	1.38	Spirohexan-4-one, 5,5-dimethyl				
11)1H)-Pyrimidinone, 2-(butylthio(4				
)1H)-Pyrimidinone, 2-(propylthio(4				
12	24.974	2.62	Heptanedioic acid, dimethyl ester				
13	25.234	1.25	Spirohexan-5-one				
14	27.311	2.39	4-Bromo-N-[(2-pyridyl)aminomethyl] phthalimide				

Table 6: Compounds of the leave ethanolic extract

Lycium shawii leave aqueous extract sample

Lycium shawii leaves aqueous extract sample show in Figure 7 and Table 5 show the compounds of the leaves aqueous extract.

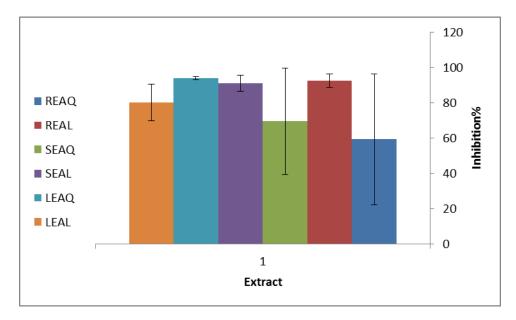
Lycium shawii leave ethanolic extract sample

Lycium shawii leaves ethanolic extract sample show in Figure 8 and Table 6 show the compounds of the leaves ethanolic extract.

Evaluation of the antioxidant activity of extracts (roots, leaves, and stems) of Lycium shawii

Results evaluation of the antioxidant activity of extracts (roots, leaves, stems) of Lycium shawii show in Table 7.

The results showed that the best antioxidant out of the six extracts used for the Lycium shawii was the aqueous extract of the leaves, where the most antioxidant appeared, and also as a result of appearance of the following active compounds in it using the GC-MAS technique are Ethene, methoxy, 3-Butyn-1-ol, 4-Bromo-N-[(2pyridyl)aminomethyl] phthalimide, Heptanedioic acid, dimethyl ester, Heptane, 1-(ethenylthio), Hexadecanoic acid, methyl ester, Pentadecanoic acid, methyl ester, 2-Pyrrolidinethione, 1,2,2,3,4-Butanepentacarbonitrile, 9-Octadecenoic acid (Z)-, methyl ester, 9-Octadecenoic acid, methyl ester, (E), 11-Octadecenoic acid, methyl ester, Methyl stearate, Heptadecanoic acid, 16-methyl-, methyl ester, 1,2Cyclobutanedicarboxylic acid, 3methyl-, dimethyl ester, Pyrimidine, 4.6dimethoxy-5-nitro, Heptanedioic acid, and dimethyl ester.


Results evaluation of the antioxidant activity of extracts (roots, leaves, stems) of Lycium shawii show in Figure 9.

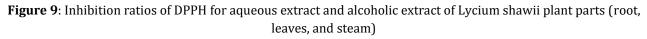

	Table 7. Evaluation of the antioxidant activity of extracts (roots, reaves, stems) of Eyclum shawn					
Groups	S.D±mean	P-value				
	59.28± 36.91	REAQ vs. REAL 0.015				
		REAQ vs. SEAQ 0.434				
REAQ		REAQ vs. SEAL 0.020				
		REAQ vs. LEAQ 0.012				
		REAQ vs. LEAL 0.116				
		REAL vs. SEAQ 0.082				
DEAL	92.44± 3.76	REAL vs. SEAL 0.905				
REAL		REAL vs. LEAQ 0.911				
		REAL vs. LEAL 0.337				
		SEAQ vs. SEAL 0.103				
SEAQ	69.40± 30.29	SEAQ vs. LEAQ 0.066				
		SEAQ vs. LEAL 0.412				
CEAL	90.91± 4.59	SEAL vs. LEAQ 0.817				
SEAL		SEAL vs. LEAL 0.399				
LEAQ	93.87± 0.84	LEAQ vs. LEAL 0.286				
LEAL	80.01±10.32					

Table 7: Evaluation of the antioxidant activity of extracts (roots, leaves, stems) of Lycium shawii

*The mean difference is significant at (P≤0.05)

*The mean difference is not significant at (P>0.05).

Hydroxyl radical scavenging activity

The results showed that the best antioxidant out of the six extracts used for the Lycium shawii was the aqueous extract of the leaves, where the most antioxidant appeared, and also as a result of appearance of the following active compounds in it using the GC-MAS technique are (3-Butyn-1-ol, Carbonic acid, dimethyl ester, Ethene, methoxy, Diazene, dimethyl, Hexadecanoic acid, methyl ester, Heptane, 1-(ethenylthio), 9,12Octadecadienoic acid, methyl ester, 9,12-Octadecadienoic acid (Z,Z), 9,12-Octadecadienoic acid (Z,Z)-, methyl ester, Phytol, 6-Octadecenoic acid, methyl ester, 9-Octadecenoic acid (Z)-, methyl ester, 11-Octadecenoic acid, methyl ester. Results Hydroxyl radical scavenging activity show in Table 8 and results Hydroxyl radical scavenging activity show in Figure 10.

Groups	Mean± S.D		P-value		
			REAQ vs. REAL	0.000	
			REAQ vs. SEAQ	0.801	
REAQ	83.51±10.06		REAQ vs. SEAL	0.099	
			REAQ vs. LEAQ	0.939	
			REAQ vs. LEAL	0.041	
			REAL vs. SEAQ	0.001	
REAL	27 61 + 26 60	REAL vs. SEAL	0.022		REAL vs. LEAQ
KEAL	37.61±26.69		0.000		
			REAL vs. LEAL	0.057	
		SEAQ vs SEAL	0.0157		SEAQ vs LEAQ
SEAQ	80.70 ±9.45		0.743		
			SEAQ vs LEAL	0.068	
25.43	(1 (1 . 00 00		SEAL vs. LEAQ	0.086	
SEAL	64.61±23.09		SEAL vs. LEAL	0.657	
LEAQ	84.36± 9.93		LEAQ vs. LEAL	0.034	
LEAL	59.66 ± 16.88				

Table 8: Hydroxyl radical scavenging activity

*The mean difference is significant at (P≤0.05).

*The mean difference is not significant at (P>0.05).

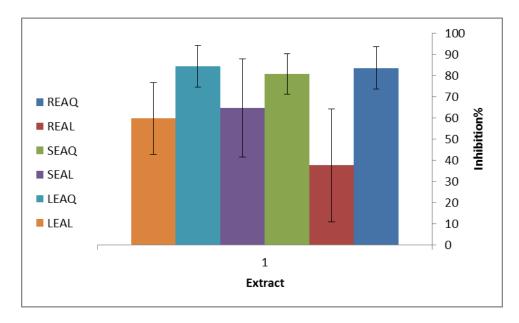


Figure 10: Inhibition ratios of OH for aqueous extract and alcoholic extract of Lycium shawii plant parts (root, leaves, and steam)

Conclusion

It was concluded from this study that the bramble plant is considered a strong antioxidant that inhibits free radicals because it contains many effective compounds that make it a powerful antioxidant, so this plant can be used in many medical applications.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' Contributions

All authors contributed to data analysis, drafting, and revising of the paper and agreed to be responsible for all the aspects of this work.

Orcid

Ali Noory Fajer https://orcid.org/0000-0001-5332-6643

References

[1]. Xing L., Wang Y., Luo R., Li X., Zou L., Determination of 31 pesticide residues in wolfberry by LC-MS/MS and dietary risk assessment of wolfberry consumption, *Food Science and Technology*, 2021, 42 [Crossref], [Google Scholar], [Publisher]

[2]. Miguel M.G., Chemical and Biological Properties of Three Poorly Studied Species of Lycium Genus—Short Review, *Metabolites*, 2022,
12:1265 [Crossref], [Google Scholar], [Publisher]

[3]. Silva C.S., Alves B.C.A., Azzalis L.A., Junqueira V.B.C., Fonseca R., Fonseca A.L.A., Fonseca F.L.A., Goji Berry (Lycium Barbarum) in the treatment of diabetes mellitus: a systematic review, 2017 [Crossref], [Google Scholar]

[4]. Pollini L., Rocchi R., Cossignani L., Mañes J., Compagnone D., Blasi F., Phenol profiling and nutraceutical potential of Lycium spp. leaf extracts obtained with ultrasound and microwave assisted techniques, *Antioxidants*, 2019, **8**:260 [Crossref], [Google Scholar], [Publisher]

[5]. Surendar A., et al. Anti-inflammatory activity of synthesized diarylpentenedione derivatives and their drug delivery with silicon-nanotube (7, 7), *Current Science*, 2019, **116**:468 [Google Scholar], [Publisher]

[6]. Rezaq N.E., Fajer A.N., Aboud H.K., The Effect of Inhalation Smoking by Narghile on Some Parameters Biochemistry, *Journal of Global Pharma Technology*, 2018, **10**:88 [Google Scholar], [Publisher] [7]. Sarheed N.M., Fajer A.N., Hussein M.N., Study of the pathological effects to one of Food additives (Gelatin 441) in male rats [Google Scholar], [Publisher]

[8]. Cheng J., Zhou Z.W., Sheng H.P., He L.J., Fan X.W., He Z.X., Sun T., Zhang X., Zhao R.J., Gu L., Cao C., An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides, *Drug design, development and therapy*, 2014, **9**:33 [Google Scholar], [Publisher]

[9]. Pires T.C., Dias M.I., Barros L., Calhelha R.C., Alves M.J., Santos-Buelga C., Ferreira I.C., Phenolic compounds profile, nutritional compounds and bioactive properties of Lycium barbarum L.: A comparative study with stems and fruits, *Industrial crops and products*, 2018, **122**:574 [Crossref], [Google Scholar], [Publisher]

[10]. Llorent-Martínez E.J., et al. Characterization and comparison of the chemical composition of exotic superfoods, *Microchemical Journal*, 2013, **110**:444 [<u>Crossref</u>], [<u>Google Scholar</u>], [<u>Publisher</u>]

[11]. Mikulic-Petkovsek M., Schmitzer V., Slatnar A., Stampar F., Veberic R., Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species, *Journal of food science*, 2012, **77**:C1064 [Crossref], [Google Scholar], [Publisher]

[12]. Safarzaei A., Sarhadi H., Khodaparast M.H.H., Shahdadi F., Dashipour A.R., Optimization of aqueous and alcoholic extraction of phenolic and antioxidant compounds from Caper (Capparis spinosa L.) Roots assisted by ultrasound waves, *Zahedan Journal of Research in Medical Sciences*, 2020, **22**:e100747 [Crossref], [Google Scholar], [Publisher]

[13]. Patil N., Shinde D., Patil P., Green Synthesis of Gold Nanoparticles Using Extract of Ginger, Apta, Umber Plants and Their Neem, Using UV-Vis Characterization XRD, Spectrophotometer, Journal of Applied Organometallic Chemistry, 2023, 3:1 [Crossref], [Publisher]

[14]. Ahmadi F.I., Fathollahi R., Dastan D., Phytochemical Constituents and Biological Properties of Scutellaria Condensata Subsp. Pycnotricha, *Journal of Applied Organometallic Chemistry*, 2022, **2**:119 [Crossref], [Google Scholar], [Publisher] [15]. Akbaba E., Yaman M., Determination of Total Phenolic Compounds and Antioxidant Capacity of Rosmarinus officinalis L. via Microwave-Assisted Extraction, *Advanced Journal of Chemistry-Section B: Natural Products and Medical Chemistry*, 2021, **3**:348 [Crossref], [Google Scholar], [Publisher]

[16]. Angulwar J.A., Khansole G.S., Bhosale V.N., Molecular Iodine Mediated One-Pot Three-Component Reaction for Synthesis of Thiadiazolo [2, 3-b] Quinozolin-6(7H)-ones and their Antimicrobial Activity, *Journal of Synthetic Chemistry*, 2022, **1**:97 [Crossref], [Google Scholar], [Publisher]

[17]. Shobana R., Vijayalakshmi S., Deepanraj B., Ranjitha J., Biodiesel production from Capparis spinosa L seed oil using calcium oxide as a heterogeneous catalyst derived from oyster shell, *Materials Today: Proceedings*, 2021 [Crossref], [Google Scholar], [Publisher]

[18]. Chong J.L. Synthesis, characterization and antioxidant activity of 1, 3, 4-oxadiazoles incorporating an indole moiety. Diss. UTAR, 2019 [Crossref], [Google Scholar], [Publisher]

[19]. Anafcheh M., A comparison between density functional theory calculations and the additive schemes of polarizabilities of the Li-F-decorated BN cages, *Journal of Applied Organometallic Chemistry*, 2021, **1**:125 [Crossref], [Google Scholar], [Publisher]

[20]. Tukur A., Musa N., Abdullahi T., Yusuf M., Usman M., Phytochemical Screening and Evaluation of the Antioxidant Potentials of the Stem Bark Extracts of Erythrophleum Africanum (African Blackwood), *Advanced Journal of Chemistry-Section B: Natural Products and Medical Chemistry*, 2022, **4**:202 [Crossref], [Google Scholar], [Publisher]

[21]. Ibrahim Arif A., Biosynthesis of copper oxide nanoparticles using Aspergillus niger extract and

their antibacterial and antioxidant activities, *Eurasian Chemical Communications*, 2023, **5**:598 [Crossref], [Google Scholar], [Publisher]

[22]. Jadhav R.K., Mahurkar S.S., More R.A., Munde D.R., [Bmim]Cl Mediated Synthesis of Novel 3-(pyridine-2-yl)/Phenyl-2H-Chromene-2-one

Derivatives Under Solvent-Free Conditions and their Antibacterial, Antifungal, Antioxidant Study, J. Synth. Chem., 2022, **1**:116 [Crossref], [Google Scholar], [Publisher]

[23]. Dahech I., Farah W., Trigui M., Hssouna A.B., Belghith H., Belghith K.S., Abdallah F.B., Antioxidant and antimicrobial activities of Lycium shawii fruits extract, *International Journal of Biological Macromolecules*, 2013, **60**:328 [Crossref], [Google Scholar], [Publisher]

[24]. Shkyair Lihumis H., Sami Abd A., Sadiq Mahdi Al-khateeb D., A. Mubarak H., M. Karhib M., Mousa Kareem M., Abdullah Aowda S., Synthesis and diagnosis of triazole and oxirane derivatives from hydroxyquioline with evaluating their biological and antioxidant activity, *Eurasian Chemical Communications*, 2023, **5**:466. [Crossref], [Google Scholar], [Publisher]

[25]. Alsubki R., Tabassum H., Abudawood M., Rabaan A.A., Alsobaie S.F., Ansar S., Green synthesis, characterization, enhanced functionality and biological evaluation of silver nanoparticles based on Coriander sativum, *Saudi Journal of Biological Sciences*, 2021, **28**:2102 [Crossref], [Google Scholar], [Publisher]

[26]. Saoudi M., Taher I., Comparative Study of Several Extraction Solvents on Phenolic Profile, Toxicity and Antioxidants Potential of Ephedra alata Leaves, *Advanced Journal of Chemistry-Section B: Natural Products and Medical Chemistry*, 2022, **4**:239 [Crossref], [Google Scholar], [Publisher]

HOW TO CITE THIS ARTICLE

Ebtihaj Jassim Jabur, Ali Noory Fajer, Detection of Active Chemical Compounds in Lycium Shawii Plant Using GC-MS Technique and Their Evaluation as Antioxidant. *J. Med. Chem. Sci.*, 2023, 6(10) 2518-2530 DOI: <u>https://doi.org/10.26655/JMCHEMSCI.2023.10.26</u> URL: <u>https://www.jmchemsci.com/article 172354.html</u>