Document Type: Original Article

Authors

1 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol 46311-39631, Mazandaran, Iran

2 Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran

Abstract

Gallic acid is one of the most abundant phytochemical in nature with anticancer activity against the prostate cancer. In this research work, carbon paste electrode (PE) modified with CdO/CNTs nanocomposite and 1-hexyl-3-methyl imidazoliume bromide (HMIZBr) design and made-up for determination of gallic acid in food samples. Electrochemical behavior of gallic acid at the CdO/CNTs/HMIZBr/PE was investigated in aqueous solution using the voltammetric methods. The gallic acid oxidation signal was improved about 2.82 times on the surface of the CdO/CNTs/HMIZBr/PE compared with that of the PE. Using differential pulse voltammetric method as sensitive strategy, the CdO/CNTs/HMIZBr/PE showed linear dynamic range 0.004-500 µM with detection limit of 0.9 nM to determine the gallic acid. In addition, real sample analysis data showed the powerful ability of the CdO/CNTs/HMIZBr/PE to determine the gallic acid in white rice.

Graphical Abstract

Keywords

Main Subjects

[1] Calheiros R., Fiuza S., Gomes C., Marques M., Milhazes N., Borges F. Fund. Clin. Pharmacol., 2004, 18:120

[2] Fiuza S., Gomes C., Teixeira L., Da Cruz M.G., Cordeiro M., Milhazes N., Bioorg. Med. Chem., 2004, 12:3581

[3] Goulas V., Stylos E., Chatziathanasiadou M.V., Mavromoustakos T., Tzakos A.G. Int. J. Mol. Sci., 2016, 17:1875

[4] Pathak S., Niranjan K., Padh H., Rajani M. Chromatographia., 2004, 60:241

[5] Koyama K., Goto-Yamamoto N., Hashizume K. Biosci. Biotech. Bioch., 2007, 71:958

[6] Pandurangan A.K., Mohebali N., Norhaizan M.E., Looi C.Y. Drug Des. Dev. Ther., 2015, 9:3923

[9] Alemika T.E., Onawunmi G.O., Olugbade T. Niger. J. Nat. Prod. Med., 2006, 10:108

[10] Chanwitheesuk A., Teerawutgulrag A., Kilburn J.D., Rakariyatham N. Food Chem., 2007, 100:1044

[11] Nakai S., Inoue Y., Hosomi M., Murakami A. Water Res., 2000, 34:3026

[12] Zucca P., Rosa A., Tuberoso C.I., Piras A., Rinaldi A.C., Sanjust E., Nutrients., 2013, 5:149

[13] Shahrzad S., Bitsch I. J. Chromatogr. B., 1998, 705:87

[14] Abdel-Hamid R., Newair E.F. J. Electroanal. Chem., 2013, 704: 32

[15] Vijayalakshmi R., Ravindhran R. Asian Pac. J. Trop. Biomed., 2012, 2:S1367

[16] Arabali V., Malekmohammadi S., Karimi F. Microchem. J., 2020, 158: 105179       

[17] Baghayeri M., Rouhi M., Lakouraj M.M., Amiri-Aref M., J. Electroanal. Chem., 2017, 784: 69

[18] Baghayeri M., Alinezhad H., Fayazi M., Tarahomi M., Ghanei-Motlagh R., Maleki B., Electrochim. Acta., 2019, 312: 80

[19] Maleki B., Baghayeri M., Abadi S.A.J., Tayebee R., Khojastehnezhad A., RSC Adv., 2016, 6:96644

[20] Golikand A.N., Raoof J., Baghayeri M., Asgari M., Irannejad L. Russ. J. Electrochem., 209, 45:192

[21] Baghayeri M., Ansari R., Nodehi M., Razavipanah I., Veisi H., Microchim. Acta, 2018, 185:320

[22] Hojjati-Najafabad A., Rahmanpour M.S., Karimi F., Zabihi-Feyzaba H., Malekmohammadi S., Agarwal S., Gupta V.K., Int. J. Electrochem. Sci., 2020, 15: 6969

[23] Zabihpour T., Shahidi S.A., Karimi Maleh H., Ghorbani-HasanSaraei A. Eurasian Chem. Commun., 2020, 2:362               

[24] Baghayeri M., Mahdavi B., Hosseinpor‐Mohsen Abadi Z., Farhadi S., Appl. Organomet. Chem., 2018, 32: e4057               

[25] Targhoo A., Amiri A., Baghayeri M., Microchim Acta., 2018, 185:15            

[26] Alizadeh M., Azar P.A., Mozaffari S.A., Karimi-maleh H., Tamaddon A.M. Front. Chem., 2020, 8: 677

[27] Davarnia B., Shahidi S.A., Karimi-Maleh H., Ghorbani-HasanSaraei A., Karimi F., Int. J. Electrochem. Sci., 2020,15:2549

[28] Fouladgar M. J. Electrochem. Soc., 2018, 165 (13): B559 

[29] Fouladgar M. Food Anal. Methods., 2017, 10:1507

[30] Fouladgar M. Sens. Actuators B Chem., 2016, 230: 456

[31] Baghayeri M., Sedrpoushan A., Mohammadi A., Heidari M. Ionics., 2017, 23: 1553