Document Type : Original Article

Authors

Department of Chemistry, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH) Shahre-Rey Branch Tehran, Iran

Abstract

In this study, boron nitride cage (B12N12) adsorption with Melphalan anticancer agent in solvent phase (water) was studied using the density function theory (DFT) method. First, the structure of the Melphalan, B12N12 and their derivatives were geometrically optimized in two different configurations, with a base set of 6-31G* and hybrid B3LYP functions. Then, IR calculations, frontier molecule orbital (FMO) studies, and molecular orbital analysis were performed. In addition, thermodynamic parameters including, Gibbs free energy (ΔGad) and enthalpy (ΔHad) variations indicated that the adsorption of Melphalan with B12N12 is intense, spontaneous, one-way and non-equilibrium. The effect of temperature was studied as well. The results proved that at K 305.15 the highest efficiency was achieved.

Graphical Abstract

Adsorption of melphalan anticancer drug on the surface of boron nitride cage (B12N12): A comprehensive DFT study

Keywords

Main Subjects

[1] Krumbhaar E.B., Krumbhaar H.D. Med Res, 2017, 11:497
[2] Mizuno K., Dong M., Fukuda T. Clin Pharmacokinet, 2018, 11:625
[3] Bergel F., Stock J.A, Chem Soc, 2018, 7:2409
[4] Boschmans J., De Bruijn E., Van Schil P., Lemiere F. Rapid Commun Mass Spectrom ,2013, 7:835
[5] Ehrsson H., Lonroth U. J. Pharm Sci, 2014, 7:826
[6]Nath C.E., Shaw P.J., Montgomery K., Earl J.W, Br J.Clin Pharmacol , 2007, 14:151
[7] Gouyette A., Hartmann O., Pico J.L, Cancer Chemother Pharmacol, 2016, 5:184
[8] Nath C.E., Trotman J., Tiley C, Br. J. Clin Pharmacol, 2016, 10:149
[9] Nath C.E., Shaw P.J., Trotman J. Br .J .Clin Pharmacol, 2010, 5:484
[10] Nath C.E., Shaw P.J., Montgomery K., Earl J.W. Br.J .Clin Pharmacol , 2005, 10:314
[11] Pinguet F., Joulia J.M., Martel P., Grosse P.Y., Astre C., Bressolle F., J Chromatogr B. Biomed Appl., 1996, 6:43
[12] Poujol S., Pinguet F., Mougenot P. J Liq Chromatogr R T., 2007, 12:301
[13] Springolo V., Borella F., Finardi G.P., Gatti M.T., Coppi G. J. Chromatogr, 1996, 5:224
[14] Chang S.Y., Alberts D.S., Melnick L.R., Walson P.D., Salmon S.E. J Pharm Sci., 1978, 4:679
[15] Huang L., Lizak P., Dvorak C.C., Aweeka F., Long-Boyle J. J Chromatogr B Analyt Technol Biomed Life Sci., 2014, 6:194
[16] Sparidans R.W., Martens I., Valkenburg-Van Iersel L.B., Den Hartigh J., Schellens J.H., Beijnen J.H.  J Chromatogr B Analyt Technol Biomed Life Sci., 2011, 6:1851
[17] Huang L., Marzan F., Jayewardene A.L., Lizak P.S., Aweeka F.T. J Chromatogr B Analyt Technol Biomed Life Sci., 2009,  6:285
[18] Blanes M., de la Rubia J., Lahuerta J.J., González J.D., Ribas P., Solano C., Alegre A., Sanz M.A.  Leuk Lymphoma, 2009, 7:216
[19] Lahuerta J.J., Martínez-López J., Grande C.  Br .J Haematol, 2000, 10:138
[20] Reece D., Song K., Leblanc R. oncologist, 2014, 8:611
[21] Ria R., Falzetti F., Ballanti S., Minelli O., di Ianni M., Cimminiello M., Vacca A., Dammacco F., Martelli M.F., Tabilio A., Hematol J, 2004,  5:118
[22] Jain P., Sahariya J., Mund H. S., Sharma M., Ahuja B. L. Comp. Mater. Sci., 2013, 72: 101.
[23] Fayet G., Joubert L., Rotureau P., Adamo C. Chem. Phys. Lett., 2009, 467: 407.
[24] Konek C. T., Mason B. P., Hooper J. P., Stoltz C. A., Wilkinson J. Chem. Phys. Lett., 2010, 489: 48.
[25] Khaleghian M., Azarakhshi F. Int. J. Nano. Dimens. 2016, 7: 290.
[26] Bahrami A., Seidi S., Baheri T., Aghamohammadi M. Superlattices. Micrstruct.,2013,64: 265.
[27] Baei M. T. Comput. Theor. Chem., 2013, 1024: 28.
[28] Esrafili M. D. Phys. Lett., 2017, 381: 2085.
[29] Vinu A., Mori T., Ariga K., Sci. Technol. Adv. Mater., 2006, 7: 753.
[30] Soltani A., Baei M. T., Mirarab M., Sheikhi M., Lemeshki E. T. J. Phys. Chem. Solids.2104, 75: 1099.
[31] Ahmadi R., Mirkamali E. S. J. Phys. Theor. Chem. IAU Iran., 2016, 13: 297.
[32] Ahmadi R., Ebrahimikia M. Phys. Chem. Res., 2017, 5: 617.
[33] Shemshaki L., Ahmadi R. Int. J. New. Chem., 2015, 2: 247.
[34] Ahmadi R., Madahzadeh Darini N. Int. J. Bio-Inorg. Hybr. Nanomater., 2016, 5: 273.
[35] Ahmadi R., Shemshaki L. Int. J. Bio-Inorg. Hybr. Nanomater., 2016, 5: 141.
[36] Ahmadi R., Jalali Sarvestani M. R. Phys. Chem. Res., 2018, 6: 639.
[37] Ahmadi R., Jalali Sarvestani M. R., Sadegi B. Int. J. Nano. Dimens., 2018, 9: 325.
[38] Jalali Sarvestani M. R., Ahmadi R. J. Phys. Theor. Chem.,2018, 15: 15.
[39] Ahmadi R., Jalali Sarvestani M. R. Int. J. Bio-Inorg. Hybrid. Nanomater.,2017, 6: 239.
[40] Ahmadi R.  Int. J. Nano. Dimens.,2107, 8: 250.
[41] Culebras M., Lopez A. M., Gomez C. M., Cantarero A. Sens. Actuators. A. Phys., 2016, 239: 161.
[42] Mikkelsen S. R. Cortón E. Bioanalytical Chemistry. Wiley-Interscience: Michigan 2004; p 145.
[43] Ahmadi R., Jalali Sarvetani M. R. Iran. Chem. Commun., 2019, 7: 344.
[44] Farhang Rik B., Ranjineh khojasteha R., Ahmadi R., Karegar Razi M. Iran. Chem. Commun., 2019, 7: 405.
[45] Jalali Sarvestani M. R., Ahmadi R. J. Water Environ. Nanotechnol., 2019, 4: 48.
[46] Mirkamali E. S., Ahmadi R., Kalateh K. Zarei G. Nanomed. J., 2019, 6: 112.